cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121694 Sum of the vertical heights (i.e., number of rows) of all deco polyominoes of height n.

This page as a plain text file.
%I A121694 #16 Aug 20 2024 11:27:40
%S A121694 1,3,12,61,377,2734,22671,211035,2175754,24592551,302295925,
%T A121694 4014475756,57277225309,873819665135,14195291340656,244657733062761,
%U A121694 4459137940238245,85694418205589534,1731893273528613811,36721566227335477047,815098440677104096866
%N A121694 Sum of the vertical heights (i.e., number of rows) of all deco polyominoes of height n.
%C A121694 A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%H A121694 E. Barcucci, S. Brunetti, and F. Del Ristoro, <a href="http://www.numdam.org/item?id=ITA_2000__34_1_1_0">Succession rules and deco polyominoes</a>, Theoret. Informatics Appl., 34, 2000, 1-14.
%H A121694 E. Barcucci, A. Del Lungo, and R. Pinzani, <a href="http://dx.doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159, 1996, 29-42.
%F A121694 a(n) = Sum_{k=1..n} k*A121692(n,k).
%F A121694 a(n) = Sum_{k=1..n} k*T(n,k), where T(n,k) (A121692) is defined by T(n,1)=1; T(n,n)=1; T(n,k) = k*T(n-1,k) + 2*T(n-1,k-1) + Sum_{j=1..k-2} T(n-1,j) for k <= n; T(n,k)=0 for k > n.
%e A121694 a(2)=3 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 rows.
%p A121694 with(linalg): a:=proc(i,j) if i=j then i elif i>j then 1 else 0 fi end: p:=proc(Q) local n,A,b,w,QQ: n:=degree(Q): A:=matrix(n,n,a): b:=j->coeff(Q,t,j): w:=matrix(n,1,b): QQ:=multiply(A,w): sort(expand(add(QQ[k,1]*t^k,k=1..n)+t*Q)): end: P[1]:=t: for n from 2 to 22 do P[n]:=p(P[n-1]) od: seq(subs(t=1,diff(P[n],t)),n=1..22);
%t A121694 (* T is A121692 *)
%t A121694 T[n_, k_] := T[n, k] = Which[k == 1, 1, k == n, 1, k > n, 0, True, k*T[n-1, k] + 2*T[n-1, k-1] + Sum[T[n-1, j], {j, 1, k-2}]];
%t A121694 a[n_] := Sum[k*T[n, k], {k, 1, n}];
%t A121694 Table[a[n], {n, 1, 21}] (* _Jean-François Alcover_, Aug 20 2024 *)
%Y A121694 Cf. A121692.
%K A121694 nonn
%O A121694 1,2
%A A121694 _Emeric Deutsch_, Aug 17 2006