A121703 Number of alternating separable permutations.
1, 2, 4, 8, 20, 48, 132, 344, 996, 2720, 8132, 22888, 69940, 201040, 624132, 1822136, 5725124, 16915008, 53648772, 160012232, 511360340, 1536928624, 4942300804, 14949122328, 48322714020, 146946942688, 477105960772, 1457491035944, 4750171491956, 14568377075344
Offset: 1
Keywords
Examples
a(4)=8 because of the 10 alternating permutations of length 4, 2413 and 3142 are not separable.
Links
- Robert Brignall, Sophie Huczynska, and Vincent Vatter, Simple permutations and algebraic generating functions, arXiv:math/0608391 [math.CO], 2006.
Crossrefs
Cf. A121704.
Programs
-
Mathematica
nmax = 40; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 2; Do[f = Sum[aa[[k]]*x^k, {k, 1, j - 1}] + koef*x^j; sol = Solve[SeriesCoefficient[f^3 - (2*x^2 - 5*x + 4)*f^2 - (4*x^3 + x^2 - 8*x)*f - (2*x^4 + 5*x^3 + 4*x^2), {x, 0, j + 2}] == 0, koef][[1]]; aa[[j]] = koef /. sol[[1]], {j, 3, nmax}]; aa (* Vaclav Kotesovec, Jul 07 2024 *)
Formula
G.f. satisfies f^3-(2x^2-5x+4)f^2-(4x^3+x^2-8x)f-(2x^4+5x^3+4x^2)=0.
Extensions
a(13) and beyond corrected by Vaclav Kotesovec, Jul 07 2024
Comments