This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121706 #44 Aug 02 2021 02:29:48 %S A121706 0,1,9,98,1300,20515,376761,7907396,186884496,4914341925,142364319625, %T A121706 4505856912854,154718778284148,5729082486784839,227584583172284625, %U A121706 9654782997596059912,435659030617933827136,20836030169620907691465 %N A121706 a(n) = Sum_{k=1..n-1} k^n. %C A121706 n^3 divides a(n) for n in A121707. %C A121706 It appears that p^(3k-1) divides a(p^k) for all integer k > 1 and prime p > 2: %C A121706 for prime p > 2, p^2 divides a(p), p^5 divides a(p^2) and p^8 divides a(p^3). %C A121706 Additionally, p^3 divides a(3p) for prime p > 2. %C A121706 For prime p > 3, p divides a(p+1) and p^3 divides a(2p+1); %C A121706 for prime p > 5, p divides a(3p+1) and p^3 divides a(4p+1); %C A121706 for prime p > 7, p divides a(5p+1) and p^3 divides a(6p+1): %C A121706 It appears that p divides a((2k+1)p+1) for integer k >= 0 and prime p > 2k+3, and p^3 divides a(2kp+1) for integer k > 0 and prime p > 2k+2. %C A121706 p divides a((p+1)/2) for primes in A002145: primes of the form 4n+3, n >= 1. %C A121706 p^2 divides a((p+1)/2) for primes in A007522: primes of the form 8n+7, n >= 0. %C A121706 n*(2*n+1) divides a(2*n+1) for n >= 1. - _Franz Vrabec_, Dec 20 2020 %H A121706 Seiichi Manyama, <a href="/A121706/b121706.txt">Table of n, a(n) for n = 1..386</a> %F A121706 a(n) = Sum(k^n, k=1..n) - n^n = A031971(n) - A000312(n) for n > 1. %F A121706 a(n) = zeta(-n) - zeta(-n, n). %p A121706 A121706 := proc(n) %p A121706 (bernoulli(n+1,n)-bernoulli(n+1))/(n+1) ; %p A121706 end proc: # _R. J. Mathar_, May 10 2013 %t A121706 Table[Sum[k^n,{k,1,n-1}],{n,1,35}] %o A121706 (PARI) a(n)=sum(k=1,n-1,k^n) \\ _Charles R Greathouse IV_, May 09 2013 %o A121706 (PARI) a(n)=subst(sumformal('x^n),'x,n-1) \\ _Charles R Greathouse IV_, May 09 2013 %Y A121706 Cf. A121707, A031971, A000312, A002145, A007522. %K A121706 nonn %O A121706 1,3 %A A121706 _Alexander Adamchuk_, Aug 16 2006 %E A121706 Edited by _M. F. Hasler_, Jul 22 2019