This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121726 #25 Sep 15 2024 03:35:30 %S A121726 1,2,6,21,85,410,2366,16065,125665,1112074,10976174,119481285, %T A121726 1421542629,18348340114,255323504918,3809950976993,60683990530209, %U A121726 1027542662934898,18430998766219318,349096664728623317,6962409983976703317,145841989688186383338,3201192743180799343822 %N A121726 Sum sequence A000522 then subtract 0,1,2,3,4,5,... %C A121726 Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - _Peter Luschny_, Nov 19 2020 %F A121726 a(n) = A006231(n) + 1 = A002104(n) - (n-1). - _Franklin T. Adams-Watters_, Aug 29 2006 %F A121726 E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - _Geoffrey Critzer_, Nov 07 2015 %e A121726 A000522 begins 1 2 5 16 65 326 ... %e A121726 with sums 1 3 8 24 89 415 ... %e A121726 so sequence begins 1 2 6 21 85 410 ... %e A121726 . %e A121726 From _Peter Luschny_, Nov 19 2020: (Start): %e A121726 The combinatorial interpretation is illustrated by this computation of a(5): %e A121726 5! / aut([5]) = 120 / A339033(5, 1) = 120/5 = 24 %e A121726 5! / aut([4, 1]) = 120 / A339033(5, 2) = 120/4 = 30 %e A121726 5! / aut([3, 1, 1]) = 120 / A339033(5, 3) = 120/6 = 20 %e A121726 5! / aut([2, 1, 1, 1]) = 120 / A339033(5, 4) = 120/12 = 10 %e A121726 5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 = 1 %e A121726 -------------------------------------------------------------- %e A121726 Sum: a(5) = 85 %e A121726 (End) %t A121726 f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* _Geoffrey Critzer_, Nov 07 2015 *) %o A121726 (PARI) A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ _R. J. Mathar_, Sep 02 2006 %o A121726 (SageMath) %o A121726 def A121726(n): %o A121726 def h(n, k): %o A121726 if n == k: return 1 %o A121726 return factorial(n)//((n + 1 - k)*factorial(k - 1)) %o A121726 return sum(h(n, k) for k in (1..n)) %o A121726 print([A121726(n) for n in (1..23)]) %o A121726 # Demonstrates the combinatorial view: %o A121726 def A121726(n): %o A121726 if n == 0: return 1 %o A121726 f = factorial(n); S = 0 %o A121726 for k in (0..n): %o A121726 for p in Partitions(n, max_part=k, inner=[k], length=n+1-k): %o A121726 S += (f // p.aut()) %o A121726 return S %o A121726 print([A121726(n) for n in (1..23)]) # _Peter Luschny_, Nov 20 2020 %Y A121726 Also the row sums of A092271. %Y A121726 Cf. A000522, A006231, A002104, A339016, A339033. %K A121726 easy,nonn %O A121726 1,2 %A A121726 _Alford Arnold_, Aug 17 2006 %E A121726 More terms from _Franklin T. Adams-Watters_, Aug 29 2006 %E A121726 More terms from _R. J. Mathar_, Sep 02 2006