cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121741 Dimensions of the irreducible representations of the simple Lie algebra of type A2 (equivalently, the group SL3) over the complex numbers, listed in increasing order.

This page as a plain text file.
%I A121741 #36 Jul 04 2023 03:55:52
%S A121741 1,3,6,8,10,15,21,24,27,28,35,36,42,45,48,55,60,63,64,66,78,80,81,90,
%T A121741 91,99,105,120,125,132,136,143,153,154,162,165,168,171,190,192,195,
%U A121741 210,216,224,231,234,253,255,260,270,273,276,280,288,300
%N A121741 Dimensions of the irreducible representations of the simple Lie algebra of type A2 (equivalently, the group SL3) over the complex numbers, listed in increasing order.
%C A121741 We include "1" for the 1-dimensional trivial representation and we list each dimension once, ignoring the fact that inequivalent representations may have the same dimension.
%C A121741 Numbers of the form (x * (x - y) * (x - z) + y * (y - x) * (y - z) + z * (z - x) * (z - y)) / 18 with x + y + z = 0 and x * y * z > 0. - _Michael Somos_, Jun 26 2013
%C A121741 Positive numbers of the form (r-s)*r*(r+s) where r and s are integers, i.e., the product of three integers in arithmetic progression. In the expression above, set x = r-s, y = r+s, and z = -x-y. - _Elliott Line_, Dec 22 2020
%D A121741 N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, Springer, 2002.
%D A121741 J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1997.
%H A121741 Andy Huchala, <a href="/A121741/b121741.txt">Table of n, a(n) for n = 1..20000</a>
%H A121741 Andy Huchala, <a href="/A121741/a121741.java.txt">Java Program</a>
%H A121741 Wikipedia, <a href="http://en.wikipedia.org/wiki/Special_linear_group">The special linear group</a>
%o A121741 (GAP) # see program at sequence A121732
%o A121741 (Python)
%o A121741 from itertools import count, islice
%o A121741 from sympy import divisors, integer_nthroot
%o A121741 def A121741_gen(startvalue=1): # generator of terms >= startvalue
%o A121741     for m in count(max(startvalue,1)):
%o A121741         for k in divisors(m<<1,generator=True):
%o A121741             p, q = integer_nthroot(k**4+(k*m<<3),2)
%o A121741             if q and not (p-k**2)%(k<<1):
%o A121741                 yield m
%o A121741                 break
%o A121741 A121741_list = list(islice(A121741_gen(),20)) # _Chai Wah Wu_, Jul 03 2023
%Y A121741 Equals A088915(n+1)/2.
%Y A121741 Cf. A121732, A121736, A121737, A121738, A121739, A104599, A121214, A162651.
%K A121741 nonn
%O A121741 1,2
%A A121741 Skip Garibaldi (skip(AT)member.ams.org), Aug 19 2006, Aug 23 2006