cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121752 Number of columns ending at an odd level in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

This page as a plain text file.
%I A121752 #4 Jul 26 2022 11:29:39
%S A121752 1,2,7,39,235,1746,14166,132408,1341432,15148080,183764880,2435607360,
%T A121752 34406268480,523839899520,8444375452800,145266278169600,
%U A121752 2631329637350400,50481429165619200,1015073771517388800
%N A121752 Number of columns ending at an odd level in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%C A121752 a(n)=Sum(k*A121697(n,k),k=0..n).
%D A121752 E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
%D A121752 E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
%F A121752 Recurrence relation: a(n)=(2n-3)a(n-1)-(n-1)(n-3)a(n-2)+(n-2)!(n*floor(n/2)-(n-2)*floor((n-1)/2)-1); a[1]=1, a[2]=2.
%F A121752 Conjecture D-finite with recurrence (-460*n+1223)*a(n) +(460*n^2+460*n-5569)*a(n-1) +(460*n^3-3826*n^2+7853*n+1313)*a(n-2) +(-460*n^4+1840*n^3+5501*n^2-31045*n+31726)*a(n-3) +(1223*n^4-13205*n^3+45787*n^2-51389*n+558)*a(n-4) -2*(426*n-1111)*(n-6)*(n-4)^2*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%e A121752 a(2)=2 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 0 and 2 columns ending at an odd level, respectively.
%p A121752 a[1]:=1: a[2]:=2: for n from 3 to 23 do a[n]:=(2*n-3)*a[n-1]-(n-1)*(n-3)*a[n-2]+(n-2)!*(n*floor(n/2)-(n-2)*floor((n-1)/2)-1) od: seq(a[n],n=1..23);
%Y A121752 Cf. A121697, A121754.
%K A121752 nonn
%O A121752 1,2
%A A121752 _Emeric Deutsch_, Aug 23 2006