cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121753 Number of deco polyominoes of height n in which all columns end at an odd level. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

Original entry on oeis.org

1, 1, 2, 6, 16, 62, 230, 1114, 5268, 30702, 176226, 1201638, 8107464, 63339702, 491010102, 4324845834, 37867131900, 371275954758, 3623124865986, 39137296073094, 421150512316032, 4969568447400366, 58455531552960198
Offset: 1

Views

Author

Emeric Deutsch, Aug 23 2006

Keywords

Comments

a(n)=A121698(n,0).

Examples

			a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes and only the horizontal one has all of its columns ending at an odd level.
		

References

  • E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
  • E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

Crossrefs

Programs

  • Maple
    a[1]:=1: a[2]:=1: for n from 3 to 26 do a[n]:= (1+2*floor((n-2)/2))*a[n-1]-(floor((n-1)/2)*floor((n-2)/2)-1)*a[n-2] od: seq(a[n],n=1..26);

Formula

Recurrence relation: a(n)=(1+2floor((n-2)/2))a(n-1)-[floor((n-1)/2)floor((n-2)/2)-1]a(n-2) for n>=3, a(1)=1, a(2)=1.