cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A121754 Number of columns ending at an even level in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

This page as a plain text file.
%I A121754 #4 Jul 26 2022 11:32:34
%S A121754 0,1,6,31,211,1530,13086,120888,1260792,14140080,174692880,2304970560,
%T A121754 32969263680,500368821120,8139251433600,139686867532800,
%U A121754 2547638477798400,48786683184691200,986263089841612800
%N A121754 Number of columns ending at an even level in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%C A121754 a(n)=Sum(k*A121698(n,k),k=1..n-1).
%D A121754 E. Barcucci, S. Brunetti and F. Del Ristoro, Succession rules and deco polyominoes, Theoret. Informatics Appl., 34, 2000, 1-14.
%D A121754 E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
%F A121754 Recurrence relation: a(n)=(2n-3)a(n-1)-(n-1)(n-3)a(n-2)+(n-2)![n-2+(1/2)(1+(-1)^(n-1))(n-1)] for n>=3; a(1)=0, a(2)=1.
%F A121754 Conjecture D-finite with recurrence 16*(n+1)*a(n) +(-16*n^2-178*n+531)*a(n-1) +(-16*n^3+178*n^2-393*n-510)*a(n-2) +(16*n^4+98*n^3-1439*n^2+4222*n-3623)*a(n-3) +(-146*n^4+1479*n^3-4483*n^2+3054*n+2841)*a(n-4) +(130*n-311)*(n-6)*(-4+n)^2*a(n-5)=0. - _R. J. Mathar_, Jul 26 2022
%e A121754 a(2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having 1 and 0 columns ending at an even level, respectively.
%p A121754 a[1]:=0: a[2]:=1: for n from 3 to 22 do a[n]:=(2*n-3)*a[n-1]-(n-1)*(n-3)*a[n-2]+(n-2)!*(n-2+(1/2)*(1+(-1)^(n-1))*(n-1)) od: seq(a[n],n=1..22);
%Y A121754 Cf. A121698, A121752.
%K A121754 nonn
%O A121754 1,3
%A A121754 _Emeric Deutsch_, Aug 23 2006