This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121822 #31 Feb 02 2025 17:13:06 %S A121822 1,5,65,1205,26465,628805,15424865,382964405,9550195265,238539648005, %T A121822 5961554097665,149021418519605,3725378557692065,93133051794619205, %U A121822 2328313585536338465,58207725254446186805,1455192101905494196865 %N A121822 Number of closed walks of length 2*n on the 5-cube. %H A121822 G. C. Greubel, <a href="/A121822/b121822.txt">Table of n, a(n) for n = 0..700</a> %H A121822 G. R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1. %H A121822 L. Reyzin, Mathoverflow, <a href="https://mathoverflow.net/questions/71736/number-of-closed-walks-on-an-n-cube">Number of closed walks on an n-cube</a> %H A121822 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-259,225). %F A121822 a(n) = (25^n + 5*9^n + 10)/16. %F A121822 G.f.: (1 - 30*x + 149*x^2)/(1 - 35*x + 259*x^2 - 225*x^3). %F A121822 From _Peter Bala_, Nov 13 2006: (Start) %F A121822 E.g.f.: cosh^5(x). %F A121822 O.g.f.: 1/(1-5*1x/(1-4*2x/(1-3*3x/(1-2*4x/(1-1*5x))))) (continued fraction). (End) %F A121822 (-1)^n*a(n) = Sum_{k=0..n} A086872(n,k)*(-6)^(n-k). - _Philippe Deléham_, Aug 17 2007 %F A121822 a(n) = (1/2^5)*Sum_{j = 0..5} binomial(5,j)*(5 - 2*j)^(2*n). See Reyzin link. - _Peter Bala_, Jun 03 2019 %t A121822 Table[(25^n +5*9^n +10)/16, {n,0,20}] (* _G. C. Greubel_, Jun 07 2019 *) %o A121822 (PARI) a(n)=(25^n+5*9^n+10)>>4 \\ _Charles R Greathouse IV_, Jan 17 2012 %o A121822 (Magma) [(25^n +5*9^n +10)/16: n in [0..20]]; // _G. C. Greubel_, Jun 07 2019 %o A121822 (Sage) [(25^n +5*9^n +10)/16 for n in (0..20)] # _G. C. Greubel_, Jun 07 2019 %o A121822 (GAP) List([0..20], n-> (25^n +5*9^n +10)/16); # _G. C. Greubel_, Jun 07 2019 %Y A121822 Cf. A054879, A081294, A092812. %K A121822 nonn,easy %O A121822 0,2 %A A121822 _Philippe Deléham_, Aug 27 2006 %E A121822 Corrected by _T. D. Noe_, Nov 07 2006