This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121897 #13 Sep 08 2022 08:45:27 %S A121897 1,1,1,1,1,3,11,131,17291,298995971,29799530324409601, %T A121897 80728364323218860837749108564353, %U A121897 49748616842002716055120167595193322161740083228987208037683201 %N A121897 a(n) = 4*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5). %H A121897 G. C. Greubel, <a href="/A121897/b121897.txt">Table of n, a(n) for n = 1..17</a> %p A121897 a:= proc(n) option remember; %p A121897 if n<6 then 1 %p A121897 else 4*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) %p A121897 fi; %p A121897 end: %p A121897 seq(a(n), n=1..15); # _G. C. Greubel_, Oct 07 2019 %t A121897 a[n_]:= a[n]= If[n<6, 1, 4*a[n-1]*a[n-2]*a[n-3]*a[n-4] - a[n-5]]; Table[a[n], {n, 15}] %t A121897 RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==1,a[n]==4a[n-1]a[n-2]a[n-3]a[n-4]-a[n-5]},a,{n,15}] (* _Harvey P. Dale_, Dec 16 2018 *) %o A121897 (PARI) my(m=15, v=concat([1,1,1,1,1], vector(m-5))); for(n=6, m, v[n] = 4*v[n-1]*v[n-2]*v[n-3]*v[n-4] - v[n-5]); v \\ _G. C. Greubel_, Oct 07 2019 %o A121897 (Magma) [n lt 6 select 1 else 4*Self(n-1)*Self(n-2)*Self(n-3)*Self(n-4) - Self(n-5): n in [1..15]]; // _G. C. Greubel_, Oct 07 2019 %o A121897 (Sage) %o A121897 def a(n): %o A121897 if (n<6): return 1 %o A121897 else: return 4*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5) %o A121897 [a(n) for n in (1..15)] # _G. C. Greubel_, Oct 07 2019 %o A121897 (GAP) %o A121897 a:= function(n) %o A121897 if n<6 then return 1; %o A121897 else return 4*a(n-1)*a(n-2)*a(n-3)*a(n-4) - a(n-5); %o A121897 fi; %o A121897 end; %o A121897 List([1..15], n-> a(n) ); # _G. C. Greubel_, Oct 05 2019 %Y A121897 Cf. A072879, A121910. %K A121897 nonn %O A121897 1,6 %A A121897 _Roger L. Bagula_, Sep 09 2006 %E A121897 Edited by _N. J. A. Sloane_, Sep 15 2006