This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A121908 #15 Nov 19 2020 11:59:16 %S A121908 1,2,3,9,19,72,181,752,2051,8902,25417,113249,333101,1510888,4538219, %T A121908 20853973,63626003,295288350,911918665,4265460227,13300767273, %U A121908 62608960656,196778953279,931129725342,2945833819213,14000655099890,44541071348599,212484364171847 %N A121908 S-D transform of Catalan numbers A000108. %H A121908 Alois P. Heinz, <a href="/A121908/b121908.txt">Table of n, a(n) for n = 0..1000</a> %F A121908 a(n) = Sum_{k=0..n} A051159(n,k) * A000108(k). %F A121908 Recurrence: see Maple program. %e A121908 1 1 2 5 14 42 132 ... (A000108) %e A121908 2 1 7 9 56 90 ... %e A121908 3 6 16 47 146 ... %e A121908 9 10 63 99 ... %e A121908 19 53 162 ... %e A121908 72 109 ... %e A121908 181 ... %e A121908 Row 1 : A000108 %e A121908 Row 2 : 1+1=2, 2-1=1, 5+2=7, 14-5=9, 42+14=56, 132-42=90, ... %e A121908 Row 3 : 1+2=3, 7-1=6, 9+7=16, 56-9=47, 90+56=146, ... %e A121908 Row 4 : 6+3=9, 16-6=10, 47+16=63, 146-47=99, ... %e A121908 Row 5 : 10+9=19, 63-10=53, 99+63=162, ... %e A121908 Row 6 : 53+19=72, 162-53=109, ... %e A121908 Row 7 : 109+72=181, ... %e A121908 First diagonal of this triangular array form this sequence. %p A121908 a:= proc(n) option remember; `if`(n<6, [1, 2, 3, 9, 19, 72][n+1], %p A121908 ((16*n^2+72*n-153)*n *a(n-1) %p A121908 +(304*n^4-1276*n^3+1213*n^2+487*n-754) *a(n-2) %p A121908 -(288*n^3-768*n^2-294*n+1424) *a(n-3) %p A121908 -(560*n^4-3772*n^3+6497*n^2+1253*n-4558) *a(n-4) %p A121908 +17*(n-4)*(16*n^2-8*n-29) *a(n-5) %p A121908 +17*(n-5)*(n-4)*(16*n^2-4*n-13) *a(n-6)) / %p A121908 (n*(n+1)*(16*n^2-36*n+7))) %p A121908 end: %p A121908 seq(a(n), n=0..40); # _Alois P. Heinz_, Jul 12 2014 %t A121908 T[n_, k_] := Binomial[Mod[n, 2], Mod[k, 2]] Binomial[Quotient[n, 2], Quotient[k, 2]]; %t A121908 a[n_] := Sum[T[n, k] CatalanNumber[k], {k, 0, n}]; %t A121908 a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 19 2020 *) %K A121908 nonn %O A121908 0,2 %A A121908 _Philippe Deléham_, Sep 01 2006 %E A121908 More terms from _Alois P. Heinz_, Jul 12 2014