This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122026 #9 Nov 14 2019 17:53:08 %S A122026 0,1,2,4,8,14,28 %N A122026 Least number m such that every tournament with at least m nodes contains the acyclic n-node tournament. %C A122026 A Ramsey-like number but defined for tournaments (i.e., directed graphs in which each node-pair is joined by exactly one arc) rather than undirected graphs. %C A122026 It is not hard to show that a(n) always exists and a(n) is nondecreasing. %C A122026 The lower bounds a(4)>=8 and a(5)>=14 and a(6)>=28 arise from the cyclic tournaments with offsets 1,2,4 mod 7; the same is true of offsets 1,3,9,2,6,5 mod 13 and the "QRgraph" in GF(3^3) with 27 vertices. %C A122026 The following lower bounds a(n)>=P+1 arise from QRgraph(P) where P is prime and P=3 (mod 4): a(8)>=48, a(9)>=84, a(10)>=108, a(12)>=200, a(13)>=272. %C A122026 This is almost certainly different from the other sequences currently in the OEIS which begin 1,2,4,8,14,28. %D A122026 K. B. Reid, Tournaments, in Handbook of Graph Theory; see p. 167. %H A122026 W. D. Smith, <a href="http://rangevoting.org/PuzzDG.html">Partial Answer to Puzzle #21: Getting rid of cycles in directed graphs</a> %H A122026 Yahoo Groups, <a href="http://groups.yahoo.com/group/RangeVoting/">Range Voting</a> %H A122026 Range Voting Yahoo Group, <a href="/A003141/a003141.txt">Introduction</a>. [Cached copy] %H A122026 RangeVoting.org, <a href="https://rangevoting.org/">Group Website</a>. %H A122026 W. D. Smith, <a href="http://rangevoting.org/PuzzRamsey.html">Survey on directed graph Ramsey Numbers</a>. %Y A122026 Cf. A122027, A003141. %K A122026 nonn %O A122026 0,3 %A A122026 _Warren D. Smith_, Sep 11 2006