cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122061 First pentagonal number, 2nd hexagonal number, 3rd heptagonal number, 4th octagonal number and then repeat the same pattern: 5th pentagonal, 6th hexagonal, 7th heptagonal, 8th octagonal, etc.

This page as a plain text file.
%I A122061 #9 Jul 13 2015 21:53:29
%S A122061 1,6,18,40,35,66,112,176,117,190,286,408,247,378,540,736,425,630,874,
%T A122061 1160,651,946,1288,1680,925,1326,1782,2296,1247,1770,2356,3008,1617,
%U A122061 2278,3010,3816,2035,2850,3744,4720,2501,3486,4558,5720,3015,4186,5452
%N A122061 First pentagonal number, 2nd hexagonal number, 3rd heptagonal number, 4th octagonal number and then repeat the same pattern: 5th pentagonal, 6th hexagonal, 7th heptagonal, 8th octagonal, etc.
%C A122061 From a quiz.
%D A122061 A. Wareham, Test Your Brain Power, Ward Lock Ltd (1995).
%H A122061 Harvey P. Dale, <a href="/A122061/b122061.txt">Table of n, a(n) for n = 1..1000</a>
%H A122061 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1).
%F A122061 a(n) = n*(3*n-1)/2 if n=1 mod 4 or n*(4*n-2)/2 if n=2 mod 4 or n*(5*n-3)/2 if n=3 mod 4 or n*(6*n-4)/2 if n=0 mod 4
%F A122061 a(n)=3*a(n-4)-3*a(n-8)+a(n-12) for n>11. - _Harvey P. Dale_, Mar 01 2015
%t A122061 fn[n_]:=Module[{r=Mod[n,4]},Which[r==1,(n(3n-1))/2,r==2,(n(4n-2))/2,r==3,(n(5n-3))/2,r==0,(n(6n-4))/2]]; Array[fn,50] (* or *) LinearRecurrence[ {0,0,0,3,0,0,0,-3,0,0,0,1},{1,6,18,40,35,66,112,176,117,190,286,408},50] (* _Harvey P. Dale_, Mar 01 2015 *)
%o A122061 (PARI) for(n=1,60,m=(n+3)%4;print1(n*((m+3)*n-m-1)/2,","))
%Y A122061 Cf. A060354.
%K A122061 nonn
%O A122061 1,2
%A A122061 Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006