This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122078 #21 Jan 09 2022 12:59:17 %S A122078 1,1,0,1,1,0,1,2,3,0,1,3,11,16,0,1,4,25,108,164,0,1,5,47,422,2168, %T A122078 3341,0,1,6,78,1251,15484,88747,138101,0,1,7,120,3124,79836,1215783, %U A122078 7409117,11578037,0,1,8,174,6925,333004,11620961,199203464,1252610909,1961162564,0 %N A122078 Triangle read by rows: T(n,k) is the number of unlabeled acyclic digraphs with n >= 0 nodes and n-k outnodes (0 <= k <= n). %D A122078 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976. %H A122078 Andrew Howroyd, <a href="/A122078/b122078.txt">Table of n, a(n) for n = 0..495</a> (rows 0..30; rows 0..15 from R. W. Robinson) %H A122078 Andrew Howroyd, <a href="/A122078/a122078_1.txt">PARI program</a>, Dec 2021, updated Jan 2022. %e A122078 Triangle T(n,k) begins: %e A122078 1: %e A122078 1, 0; %e A122078 1, 1, 0; %e A122078 1, 2, 3, 0; %e A122078 1, 3, 11, 16, 0; %e A122078 1, 4, 25, 108, 164, 0; %e A122078 1, 5, 47, 422, 2168, 3341, 0; %e A122078 1, 6, 78, 1251, 15484, 88747, 138101, 0; %e A122078 ... %o A122078 (PARI) \\ See link for program code. %o A122078 { my(T=AcyclicDigraphsByNonSources(8)); for(n=1, #T, print(T[n])) } \\ _Andrew Howroyd_, Dec 31 2021 %Y A122078 Row sums give A003087. %Y A122078 Diagonals include A000007, A350415. %Y A122078 Cf. A058876 (labeled case), A350447, A350448, A350449, A350450. %K A122078 nonn,tabl %O A122078 0,8 %A A122078 _N. J. A. Sloane_, Oct 18 2006 %E A122078 Zero terms inserted by _Andrew Howroyd_, Dec 29 2021