cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122082 Number of unlabeled bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.

This page as a plain text file.
%I A122082 #21 Mar 11 2020 19:03:44
%S A122082 1,2,5,16,67,404,3904,64840,1930842,104698904,10401039400,
%T A122082 1900637187280,641429385018832,401454435464761376,
%U A122082 467919402404052870944,1019758699013228238271040,4171161230867751509749228304
%N A122082 Number of unlabeled bicolored graphs on 2n nodes which are invariant when the two color classes are interchanged.
%D A122082 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
%H A122082 Andrew Howroyd, <a href="/A122082/b122082.txt">Table of n, a(n) for n = 0..50</a>
%H A122082 F. Harary, L. March and R. W. Robinson, <a href="https://doi.org/10.1068/b050031">On enumerating certain design problems in terms of bicolored graphs with no isolates</a>, Environment and Planning, B 5 (1978), 31-43.
%H A122082 F. Harary, L. March and R. W. Robinson, <a href="/A007139/a007139.pdf">On enumerating certain design problems in terms of bicolored graphs with no isolates</a>, Environment and Planning B: Urban Analytics and City Science, 5 (1978), 31-43. [Annotated scanned copy]
%F A122082 a(n) = 2*A007139(n) - A002724(n). - _Vladeta Jovovic_, Feb 27 2007
%t A122082 permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t A122082 edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total @ Quotient[v + 1, 2]
%t A122082 a[n_] := (s=0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
%t A122082 Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 06 2018, after _Andrew Howroyd_ *)
%o A122082 (PARI)
%o A122082 permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o A122082 edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, (v[i]+1)\2)}
%o A122082 a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ _Andrew Howroyd_, Oct 23 2017
%Y A122082 Row sums of A123548.
%Y A122082 Cf. A002724, A007139, A333160.
%K A122082 nonn
%O A122082 0,2
%A A122082 _N. J. A. Sloane_, Oct 18 2006
%E A122082 More terms from _Vladeta Jovovic_, Feb 27 2007