This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122085 #11 Nov 03 2019 15:54:54 %S A122085 1,1,1,1,1,1,1,1,1,2,2,1,1,2,4,2,1,1,3,7,7,3,1,1,3,10,14,10,3,1,1,4, %T A122085 14,28,28,14,4,1,1,4,19,45,65,45,19,4,1,1,5,24,73,132,132,73,24,5,1,1, %U A122085 5,30,105,242,316,242,105,30,5,1,1,6,37,152,412,693,693,412,152 %N A122085 Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= n-1, except k=0 or 1 if n=1, k=1 if n=2) nodes of one color and n-k nodes of the other color (the colors are not interchangeable). %D A122085 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978. %H A122085 R. W. Robinson, <a href="/A122085/b122085.txt">Rows 1 through 30, flattened</a> %e A122085 K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color. %e A122085 0 1 1 %e A122085 1 0 1 %e A122085 Total( 1) = 2 %e A122085 1 1 1 %e A122085 Total( 2) = 1 %e A122085 1 2 1 %e A122085 2 1 1 %e A122085 Total( 3) = 2 %e A122085 1 3 1 %e A122085 2 2 1 %e A122085 3 1 1 %e A122085 Total( 4) = 3 %e A122085 1 4 1 %e A122085 2 3 2 %e A122085 3 2 2 %e A122085 4 1 1 %e A122085 Total( 5) = 6 %e A122085 1 5 1 %e A122085 2 4 2 %e A122085 3 3 4 %e A122085 4 2 2 %e A122085 5 1 1 %e A122085 Total( 6) = 10 %e A122085 . %e A122085 From _Andrew Howroyd_, Nov 02 2019: (Start) %e A122085 Triangle for n >= 2, 1 <= k < n: %e A122085 2 | 1; %e A122085 3 | 1, 1; %e A122085 4 | 1, 1, 1; %e A122085 5 | 1, 2, 2, 1; %e A122085 6 | 1, 2, 4, 2, 1; %e A122085 7 | 1, 3, 7, 7, 3, 1; %e A122085 8 | 1, 3, 10, 14, 10, 3, 1; %e A122085 9 | 1, 4, 14, 28, 28, 14, 4, 1; %e A122085 10 | 1, 4, 19, 45, 65, 45, 19, 4, 1; %e A122085 11 | 1, 5, 24, 73, 132, 132, 73, 24, 5, 1; %e A122085 12 | 1, 5, 30, 105, 242, 316, 242, 105, 30, 5, 1; %e A122085 ... %e A122085 (End) %Y A122085 Row sums give A122086. %Y A122085 Cf. A329054 (regular array with same data). %K A122085 nonn,tabf %O A122085 1,10 %A A122085 _N. J. A. Sloane_, Oct 19 2006