This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122087 #10 Apr 05 2023 15:35:47 %S A122087 1,1,1,1,1,1,2,1,2,3,1,3,7,1,3,10,9,1,4,14,28,1,4,19,45,37,1,5,24,73, %T A122087 132,1,5,30,105,242,168,1,6,37,152,412,693,1,6,44,204,660,1349,895,1, %U A122087 7,52,274,1008,2472,3927,1,7,61,351,1479,4219,8105,5097,1,8 %N A122087 Triangle read by rows: T(n,k) = number of unlabeled free bicolored trees with n nodes (n >= 1) and k (1 <= k <= floor(n/2), except k = 0 if n = 1 ) nodes of one color and n-k nodes of the other color (the colors are interchangeable). %D A122087 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978. %H A122087 R. W. Robinson, <a href="/A122087/b122087.txt">Rows 1 through 30, flattened</a> %F A122087 T(n,k) = A329054(k, n-k) for 2*k < n; T(2*n,n) = A119856(n). - _Andrew Howroyd_, Apr 04 2023 %e A122087 K M N gives the number N of unlabeled free bicolored trees with K nodes of one color and M nodes of the other color. %e A122087 0 1 1 %e A122087 Total( 1) = 1 %e A122087 1 1 1 %e A122087 Total( 2) = 1 %e A122087 1 2 1 %e A122087 Total( 3) = 1 %e A122087 1 3 1 %e A122087 2 2 1 %e A122087 Total( 4) = 2 %e A122087 1 4 1 %e A122087 2 3 2 %e A122087 Total( 5) = 3 %e A122087 1 5 1 %e A122087 2 4 2 %e A122087 3 3 3 %e A122087 Total( 6) = 6 %e A122087 1 6 1 %e A122087 2 5 3 %e A122087 3 4 7 %e A122087 Total( 7) = 11 %e A122087 1 7 1 %e A122087 2 6 3 %e A122087 3 5 10 %e A122087 4 4 9 %e A122087 Total( 8) = 23 %e A122087 From _Andrew Howroyd_, Apr 05 2023: (Start) %e A122087 Triangle begins: %e A122087 n\k| 0 1 2 3 4 5 6 %e A122087 ----+---------------------------- %e A122087 1 | 1; %e A122087 2 | . 1; %e A122087 3 | . 1; %e A122087 4 | . 1, 1; %e A122087 5 | . 1, 2; %e A122087 6 | . 1, 2, 3; %e A122087 7 | . 1, 3, 7; %e A122087 8 | . 1, 3, 10, 9; %e A122087 9 | . 1, 4, 14, 28; %e A122087 10 | . 1, 4, 19, 45, 37; %e A122087 11 | . 1, 5, 24, 73, 132; %e A122087 12 | . 1, 5, 30, 105, 242, 168; %e A122087 ... %e A122087 (End) %Y A122087 Row sums give A000055. %Y A122087 Cf. A119856, A329054, A362019 (labeled version). %K A122087 nonn,tabf %O A122087 1,7 %A A122087 _N. J. A. Sloane_, Oct 19 2006