This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122093 #7 Jun 13 2016 07:23:25 %S A122093 8,64,460,2633,12926,55682,196527,837826,3059886,9285173,26956956, %T A122093 72856639,184807084,541527736,1520886410,3873955950,8929796766, %U A122093 20494615529,45883467602,98229395430,209914872426,488915652233,1113313955086,2451792530303,5004689907217 %N A122093 Product of the first n 4-almost primes, divided by product of the first n primes, rounded down. %C A122093 This is to 4-almost primes as A122032 is to 3-almost primes and as A122019 is to 2-almost primes (semiprimes). Note that these can nonmonotonic (look at the graphs). What is the asymptotic value of the ratio A114426(n)/A002110(n)? %C A122093 Probably it can be easily proved that a(n) = 0 for n >= 802. - _Giovanni Resta_, Jun 13 2016 %H A122093 Giovanni Resta, <a href="/A122093/b122093.txt">Table of n, a(n) for n = 1..1000</a> %F A122093 a(n) = floor(A114426(n)/A002110(n)) = floor(Prod(i=1..n)4almostprime(i)/Prod(i=1..n)prime(i)) = floor(Prod(i=1..n)A014613(i)/Prod(i=1..n)A000040(i)) = floor(Prod(i=1..n)(A014613(i)/A000040(i))). %e A122093 a(1) = floor(16/2) = floor(8) = 8. %e A122093 a(2) = floor((16*24)/(2*3)) = floor(384/6) = floor(64) = 64. %e A122093 a(3) = floor(13824/30) = floor(460.8) = 460. %e A122093 a(4) = floor(552960/210) = floor(2633.14286) = 2633. %t A122093 q = Select[Range[1000], PrimeOmega[#] == 4 &]; m = 1; Table[ Floor[ m *= q[[i]]/ Prime[i]], {i, Length@ q}] (* _Giovanni Resta_, Jun 13 2016 *) %Y A122093 Cf. A000040, A002110, A014613, A114426, A122019, A122032. %K A122093 easy,nonn %O A122093 1,1 %A A122093 _Jonathan Vos Post_, Oct 17 2006 %E A122093 a(11)-a(25) from _Giovanni Resta_, Jun 13 2016