cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122105 Sum of the bottom levels of all columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

This page as a plain text file.
%I A122105 #25 Jun 06 2024 12:32:44
%S A122105 0,0,0,1,11,101,932,9080,94852,1066644,12905784,167622984,2330016768,
%T A122105 34551794304,544873631616,9110134903680,161038110977280,
%U A122105 3001678242428160,58853489050759680,1211082030609016320,26101332373130496000,588033071962511616000
%N A122105 Sum of the bottom levels of all columns in all deco polyominoes of height n. A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
%H A122105 Elena Barcucci, Sara Brunetti and Francesco Del Ristoro, <a href="http://www.numdam.org/item?id=ITA_2000__34_1_1_0">Succession rules and deco polyominoes</a>, Theoret. Informatics Appl., 34, 2000, 1-14.
%H A122105 Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, <a href="http://dx.doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159, 1996, 29-42.
%H A122105 Loïc Foissy, <a href="https://arxiv.org/abs/2406.01120">The antipode of of [sic] a Com-PreLie Hopf algebra</a>, arXiv:2406.01120 [math.CO], 2024. See p. 12.
%F A122105 a(n) = Sum_{k>=0} k*A122104(n,k).
%F A122105 Recurrence relation: a(n) = (2n-1)*a(n-1)-(n-1)^2*a(n-2)+(n-2)!*(n-2) for n>=3, a(0)=a(1)=a(2)=0.
%F A122105 a(n) = n![n - H(n) - (H(n))^2/2 + (1/2)Sum(1/j^2, j=1..n)], where H(n)=Sum(1/j, j=1..n). - _Emeric Deutsch_, Apr 06 2008
%F A122105 E.g.f.: (2 * x + (1 - x) * log(1 - x) * (2 - log(1 - x))) / (2 * (1 - x)^2). - _Ilya Gutkovskiy_, Sep 02 2021
%F A122105 D-finite with recurrence a(n) +(-3*n+1)*a(n-1) +(3*n^2-4*n-2)*a(n-2) +(-n^3+2*n^2+7*n-15)*a(n-3) +(n-3)^3*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%e A122105 a(2)=0 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having all their columns starting at level zero.
%p A122105 a[0]:=0: a[1]:=0: a[2]:=0: for n from 3 to 23 do a[n]:=(2*n-1)*a[n-1]-(n-1)^2*a[n-2]+(n-2)*(n-2)! od: seq(a[n],n=0..23);
%t A122105 RecurrenceTable[{a[0]==a[1]==0,a[n]==(2n-1)*a[n-1]-(n-1)^2*a[n-2]+(n-2)!*(n-2)}, a, {n,0,20}] (* _Harvey P. Dale_, Dec 04 2014; adapted to offset 0 by _Georg Fischer_, Jul 30 2022 *)
%Y A122105 Cf. A122104.
%K A122105 nonn
%O A122105 0,5
%A A122105 _Emeric Deutsch_, Aug 24 2006