cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122121 Number of primes <= 10^(n/2).

Original entry on oeis.org

0, 2, 4, 11, 25, 65, 168, 446, 1229, 3401, 9592, 27293, 78498, 227647, 664579, 1951957, 5761455, 17082666, 50847534, 151876932, 455052511, 1367199811, 4118054813, 12431880460, 37607912018, 113983535775, 346065536839, 1052370166553, 3204941750802, 9773865306521
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from Klaus Kastberg (Kastberg(AT)aapt.net.au), Oct 17 2006

Keywords

Examples

			a(3) = 11: sqrt(1000) = 31.62277660..., pi(31) = 11.
		

Crossrefs

Programs

  • Mathematica
    a={}; For[n=0, n<=27, n++, AppendTo[a,PrimePi[10^(n/2)]]]; Print[a]; (* John W. Layman, Mar 12 2010 *)
  • PARI
    { a= 0; n= 1; p=2 ; while(1, a++ ; pnext =nextprime(p+1) ; if( p^2 <= 10^n && pnext^2>10^n, print(a) ; n++ ; ) ; p=pnext ; ) ; } \\ R. J. Mathar, Jan 13 2007
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A122121(n): return primepi(isqrt(10**n)) # Chai Wah Wu, Oct 17 2024

Formula

a(2n) = A006880(n). - R. J. Mathar, Jan 13 2007

Extensions

More terms from R. J. Mathar, Jan 13 2007
a(0)-a(17) confirmed, and a(18)-a(26) added using Mathematica, by John W. Layman, Mar 12 2010
a(27) and a(28) added using Mathematica, by David Baugh, Oct 06 2011
a(29) from Donovan Johnson, Mar 12 2013
a(30)-a(46) added using Kim Walisch's primecount program, by David Baugh, Feb 10 2015
a(47)-a(52) from David Baugh using Kim Walisch's primecount program, Jun 19 2016