cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122133 Number of different polyominoes with maximum area of the convex hull.

This page as a plain text file.
%I A122133 #37 Aug 23 2019 04:02:41
%S A122133 1,1,1,3,5,11,9,26,22,53,36,93,64,151,94,228,143,329,195,455,271,611,
%T A122133 351,798,460,1021,574,1281,722,1583,876,1928,1069,2321,1269,2763,1513,
%U A122133 3259,1765,3810,2066,4421,2376,5093,2740,5831,3114,6636,3547,7513,3991
%N A122133 Number of different polyominoes with maximum area of the convex hull.
%H A122133 Colin Barker, <a href="/A122133/b122133.txt">Table of n, a(n) for n = 1..1000</a>
%H A122133 K. Bezdek, P. Brass and H. Harborth, <a href="http://eudml.org/doc/232207">Maximum convex hulls of connected systems of segments and of polyominoes</a>, Beiträge Algebra Geom., Vol. 35(1) (1994), pp. 37-43.
%H A122133 S. Kurz, <a href="http://www.wm-archive.uni-bayreuth.de/fileadmin/Sascha/Publikationen2/thesis.pdf">Polyominoes with maximum convex hull</a>, Diploma thesis, Bayreuth (2004).
%H A122133 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,1,0,-4,0,1,0,2,0,-1).
%F A122133 a(n) = (n^3 - 2*n^2 + 4*n)/16 if n mod 4 = 0;
%F A122133 a(n) = (n^3 - 2*n^2 + 13*n + 20)/32 if n mod 4 = 1;
%F A122133 a(n) = (n^3 - 2*n^2 + 4*n + 8)/16 if n mod 4 = 2;
%F A122133 a(n) = (n^3 - 2*n^2 + 5*n + 8)/32 if n mod 4 = 3.
%F A122133 G.f.: (1 + x - x^2 - x^3 + 2*x^5 + 8*x^6 + 2*x^7 + 4*x^8 + 2*x^9 - x^10 + x^12)/((1-x^2)^2*(1-x^4)^2).
%F A122133 From _Luce ETIENNE_, Aug 14 2019: (Start)
%F A122133 a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
%F A122133 a(n) = 2*a(n-2) + a(n-4) - 4*a(n-6) + a(n-8) + 2*a(n-10) - a(n-12).
%F A122133 a(n) = (3*n^3 - 6*n^2 + 17*n + 22 + (n^3 - 2*n^2 - n - 6)*(-1)^n - 4*(4*cos(n*Pi/2) - (2*n+3)*sin(n*Pi/2)))/64. (End)
%F A122133 E.g.f.: (1/64)*(-exp(-x)*(6 - 2*x - x^2 + x^3) + exp(x)*(22 + 14*x + 3*x^2 + 3*x^3) - 4*(4*cos(x) - 2*x*cos(x) - 3*sin(x))). - _Stefano Spezia_, Aug 14 2019
%p A122133 A122133 := proc(n)
%p A122133     if modp(n,4)= 0 then
%p A122133         (n^3-2*n^2+4*n)/16 ;
%p A122133     elif modp(n,4)= 1 then
%p A122133         (n^3-2*n^2+13*n+20)/32 ;
%p A122133     elif modp(n,4)= 2 then
%p A122133         (n^3-2*n^2+4*n+8)/16 ;
%p A122133     else
%p A122133         (n^3-2*n^2+5*n+8)/32 ;
%p A122133     fi;
%p A122133 end proc: # _R. J. Mathar_, May 19 2019
%o A122133 (PARI) Vec(x*(1+x-x^2+x^3+2*x^4+4*x^5+2*x^6+5*x^7+2*x^8+x^9)/((1-x)^4*(1+x)^4*(1+x^2)^2) + O(x^80)) \\ _Colin Barker_, Oct 14 2016
%K A122133 nonn,easy
%O A122133 1,4
%A A122133 _Sascha Kurz_, Aug 21 2006