cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122148 Numerator of Sum[ (-1)^(k+1) * 1/p(k)^p(k), {k,1,n}], where p(k) = Prime[k].

This page as a plain text file.
%I A122148 #4 Mar 31 2012 13:20:28
%S A122148 1,23,71983,59280758269,16913492177093188294859,
%T A122148 5122675745984257357873512804013239827,
%U A122148 4237683625666802603266159755806379107958975382128522814879
%N A122148 Numerator of Sum[ (-1)^(k+1) * 1/p(k)^p(k), {k,1,n}], where p(k) = Prime[k].
%C A122148 C = Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,Infinity} ] = 1/2^2 - 1/3^3 + 1/5^5 - 1/7^7 + 1/11^11 - 1/13^13 + ... A122147[n] is a decimal expansion of C = 0.213281748700785698255627...
%F A122148 a(n) = Numerator[ Sum[ (-1)^(k+1) * 1/Prime[k]^Prime[k], {k,1,n} ] ].
%e A122148 a[n] / A076265[n] begins 1/4, 23/108, 71983/337500, ...
%t A122148 Table[Numerator[Sum[(-1)^(k+1)*1/Prime[k]^Prime[k],{k,1,n}]],{n,1,10}]
%Y A122148 Cf. A051674, A122147, A094289, A117579, A076265, A000040.
%K A122148 frac,nonn
%O A122148 1,2
%A A122148 _Alexander Adamchuk_, Aug 22 2006