cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122184 Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.

This page as a plain text file.
%I A122184 #5 Feb 16 2025 08:33:02
%S A122184 1,15,1705,47789,1369377,213162301,43005554527,14505995375,
%T A122184 23869750002797,2384790127843063,624724994927411,24386251366041479501,
%U A122184 2042595777439018142725,11191251831905709132993
%N A122184 Numerator of Sum_{k=0..2n} (-1)^k/C(2n,k)^3.
%C A122184 p^k divides a((p^k+1)/2) for prime p>2 and integer k>0.
%H A122184 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinomialSums.html">Binomial Sums</a>.
%F A122184 a(n) = Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ].
%t A122184 Table[ Numerator[ Sum[ (-1)^k / Binomial[2n,k]^3, {k,0,2n} ] ], {n,0,25} ]
%Y A122184 Cf. A046825 = Numerator of Sum_{k=0..n} 1/C(n, k). Cf. A100516 = Numerator of Sum_{k=0..n} 1/C(n, k)^2. Cf. A100518 = Numerator of Sum_{k=0..n} 1/C(n, k)^3. Cf. A100520 = Numerator of Sum_{k=0..2n} (-1)^k/C(2n, k)^2.
%K A122184 frac,nonn
%O A122184 0,2
%A A122184 _Alexander Adamchuk_, May 10 2007