cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers.

This page as a plain text file.
%I A122194 #28 Jan 05 2025 19:51:38
%S A122194 3,5,6,9,10,15,17,25,28,41,46,67,75,109,122,177,198,287,321,465,520,
%T A122194 753,842,1219,1363,1973,2206,3193,3570,5167,5777,8361,9348,13529,
%U A122194 15126,21891,24475,35421,39602,57313,64078,92735,103681,150049,167760,242785
%N A122194 Numbers that are the sum of exactly two sets of Fibonacci numbers.
%H A122194 Vincenzo Librandi, <a href="/A122194/b122194.txt">Table of n, a(n) for n = 1..1000</a>
%H A122194 J. Berstel, <a href="http://www-igm.univ-mlv.fr/~berstel/Articles/2001ExerciceAldo.pdf">An Exercise on Fibonacci Representations</a>, RAIRO/Informatique Theorique, Vol. 35, No 6, 2001, pp. 491-498, in the issue dedicated to Aldo De Luca on the occasion of his 60th anniversary.
%H A122194 M. Bicknell-Johnson & D. C. Fielder, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/37-1/bicknell.pdf">The number of Representations of N Using Distinct Fibonacci Numbers, Counted by Recursive Formulas</a>, Fibonacci Quart. 37.1 (1999) pp. 47 ff.
%H A122194 Ron Knott <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibrep.html#sumoffib">Sumthing about Fibonacci Numbers</a>
%H A122194 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,-1).
%F A122194 a(2n-1) = A000032(n+2) - 1,
%F A122194 a(2n) = 2*A000045(n+3) - 1.
%F A122194 a(2n-1) = A001610(n+2), a(2n) = A001595(n+2).
%F A122194 a(1)=3, a(2)=5, a(3)=6, a(4)=9, a(n) = a(n-2) + a(n-4) + 1, n > 4.
%F A122194 G.f.: (3 + 2*x - 2*x^2 + x^3 - 3*x^4)/(1-x-x^2+x^3-x^4+x^5).
%F A122194 a(n) = A272632(n)-1. - _R. J. Mathar_, Jan 13 2023
%e A122194 a(1)=3 as 3 is the sum of just 2 Fibonacci sets {3=Fibonacci(4)} and {1=Fibonacci(2), 2=Fibonacci(3)};
%e A122194 a(2)=5 as 5 is sum of Fibonacci sets {5} and {2,3} only.
%p A122194 fib:= combinat[fibonacci]:
%p A122194 lucas:=n->fib(n-1)+fib(n+1):
%p A122194 a:=n -> if n mod 2 = 0 then 2 *fib(n/2+3) -1 else lucas((n+1)/2+2)-1 fi:
%p A122194 seq(a(n), n=1..50);
%t A122194 LinearRecurrence[{1, 1, -1, 1, -1}, {3, 5, 6, 9, 10, 15}, 40] (* _Vincenzo Librandi_, Jul 25 2017 *)
%t A122194 Table[If[Mod[n,2]==0, 2*Fibonacci[(n+6)/2]-1, LucasL[(n+5)/2]-1], {n,50}] (* _G. C. Greubel_, Jul 13 2019 *)
%o A122194 (PARI) vector(50, n, f=fibonacci; if(n%2==0, 2*f((n+6)/2)-1, f((n+7)/2) + f((n+3)/2)-1)) \\ _G. C. Greubel_, Jul 13 2019
%o A122194 (Magma) f:=Floor; [(n mod 2) eq 0 select 2*Fibonacci(f((n+6)/2))-1 else Lucas(f((n+5)/2))-1: n in [1..50]]; // _G. C. Greubel_, Jul 13 2019
%o A122194 (Sage)
%o A122194 def a(n):
%o A122194     if (mod(n,2)==0): return 2*fibonacci((n+6)/2) - 1
%o A122194     else: return lucas_number2((n+5)/2, 1,-1) -1
%o A122194 [a(n) for n in (1..50)] # _G. C. Greubel_, Jul 13 2019
%o A122194 (GAP)
%o A122194 a:= function(n)
%o A122194     if n mod 2=0 then return 2*Fibonacci(Int((n+6)/2)) -1;
%o A122194     else return Lucas(1,-1, Int((n+5)/2))[2] -1;
%o A122194     fi;
%o A122194   end;
%o A122194 List([1..50], n-> a(n) ); # _G. C. Greubel_, Jul 13 2019
%Y A122194 Cf. A000032, A000045, A000071, A000119, A013583, A122195.
%K A122194 nonn,easy
%O A122194 1,1
%A A122194 _Ron Knott_, Aug 25 2006