This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122218 #17 Jan 12 2024 22:44:35 %S A122218 0,0,0,1,1,1,1,2,2,1,1,3,4,3,1,1,4,7,7,4,1,1,5,11,14,11,5,1,1,6,16,25, %T A122218 25,16,6,1,1,7,22,41,50,41,22,7,1,1,8,29,63,91,91,63,29,8,1,1,9,37,92, %U A122218 154,182,154,92,37,9,1 %N A122218 Pascal array A(n,p,k) for selection of k elements from two sets L and U with n elements in total whereat the nl = n - p elements in L are labeled and the nu = p elements in U are unlabeled and (in this example) with p = 2 (read by rows). %C A122218 See Maple's command choose applied to lists (not sets): e.g., with p = 3 choose([1,2,a,a],3) gives [[1, 2, a], [1, a, a], [2, a, a]]. Furthermore nops(choose([1,2,a,a],3)) gives 3. For p = 0 one gets the usual Pascal triangle. For p=2 and k=2 we have the sequence 1,2,4,7,11,16,22,29,37,... = A000124 = Central polygonal numbers. For p=2 and k=3 we have the sequence 3,7,14,25,41,63,92,... = A004006 = C(n,1)+C(n,2)+C(n,3), or n*(n^2+5)/6. For p=2 the row sums form sequence A007283 = 3*2^n. %C A122218 This is a triangular array like the Pascal triangle. [I.e., T(n+1,k) = T(n,k-1) + T(n,k) for n <> 1, cf. formulas. - _M. F. Hasler_, Jan 06 2024] %C A122218 It appears that for n > 2, a(n) = A072405(n) (C(n,k)-C(n-2,k-1)). - _Gerald McGarvey_, Sep 30 2008 %H A122218 H. S. Wilf, <a href="http://www.cis.upenn.edu/~wilf/lecnotes.html">Lecture notes on combinatorics and Maple</a>. %F A122218 Let Sum_{l+u = k, l <= nl, u <= nu} denote the sum over all integer partitions [l,u] of k into the 2 parts l and u with the following properties: %F A122218 1.) l <= nl, u <= nu, %F A122218 2.) [l,u] and [u,l] are considered as two different partitions, %F A122218 3.) but the partition [l=k/2, u=k/2], i.e., if l=u, is taken only once, %F A122218 4.) [l=k,0] and [0, u=k] are considered to be partitions of k into 2 parts also. As usual, C(nl,l) and C(u,u) are binomial coefficients ("nl choose l" and "u choose u"). The Pascal array A(nl,l,nu,u,k) = A(n,p,k) gives the number of possible sets which can be taken from L and U (with elements either from both sets L and U or just from one of the sets L or U). Then A(n,p,k) = Sum_{l+u=k, l<=nl, u<=nu} C(n-p,l,k) C(u,u). %F A122218 From _M. F. Hasler_, Jan 06 2024: (Start) %F A122218 T(n,k) = A(n,2,k) = C(n,k) - C(n-2,k-1) except for (n,k) = (0,0) and (1,0). %F A122218 Pascal-type triangle: T(n+1,k) = T(n,k-1)+ T(n,k) for all n <> 1, with T(n,k) = 0 for k < 0 or k > n. (End) %e A122218 From _M. F. Hasler_, Jan 06 2024: (Start) %e A122218 The triangle T(n,k) := A(n,2,k) starts: %e A122218 n |row(n) = (A(n,2,0), ..., A(n,2,n)) %e A122218 ----+------------------------------------ %e A122218 0 | 0, %e A122218 1 | 0, 0, %e A122218 2 | 1, 1, 1, %e A122218 3 | 1, 2, 2, 1, %e A122218 4 | 1, 3, 4, 3, 1, %e A122218 5 | 1, 4, 7, 7, 4, 1, %e A122218 6 | 1, 5, 11, 14, 11, 5, 1 %e A122218 7 | 1, 6, 16, 25, 25, 16, 6, 1, %e A122218 8 | 1, 7, 22, 41, 50, 41, 22, 7, 1, %e A122218 9 | 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, %e A122218 10| 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1 %e A122218 (End) %e A122218 For n = 4 and p = 2 we have nl = 2, nu = 2 and we have the sets L = {1,2} and U = {a,a}, or L+U = {1,2,a,a}. %e A122218 Then for k = 1 we have A(4,2,1) = 3 because we can select {1}, {2}, {a}. %e A122218 Then for k = 2 we have A(4,2,2) = 4 because we can select {1,2}, {1,a}, {2,a}, {a,a}. %e A122218 Then for k = 3 we have A(4,2,3) = 3 because we can select {1,2,a}, {1,a,a,}, {2,a,a}. %e A122218 Then for k = 4 we have A(4,2,4) = 1 because we can select {1,2,a,a}. %e A122218 For n = 4 and p = 3 we have nl = 1, nu = 3 and we have the sets L = {1} and U = {a,a,a}, or L+U = {1,a,a,a}. %e A122218 Then for k = 1 we have A(4,3,1) = 2 because we can select {1}, {a}. %e A122218 Then for k = 2 we have A(4,3,2) = 2 because we can select {1,a}, {a,a}. %e A122218 Then for k = 3 we have A(4,3,3) = 2 because we can select {1,a,a}, {a,a,a,}. %e A122218 Then for k = 4 we have A(4,3,4) = 1 because we can select {1,a,a,a}. %p A122218 CallPascalLU := proc() local n,p,k,nl,nv; global result,ierr; %p A122218 for n from 0 to 10 do p:=2; nl:=n-p; nv:=p; for k from 0 to n do PascalLU(n,nl,nv,k,result,ierr); if ierr <> 0 then print("An error has occured!"); fi; print("CallPascalLU: n, p, k, C(n,p,k):",n,p,k,result); end do; end do; end proc; %p A122218 PascalLU := proc(n::integer,nl::integer,nv::integer,k::integer) %p A122218 local i,l,u,prttn,prttnlst,swap; %p A122218 global result,ierr; %p A122218 ierr:=0; %p A122218 if nl+nv <> n or k > n or n < 0 or k < 0 then ierr=1; return; fi; %p A122218 prttnlst:=NULL; %p A122218 result:=0; %p A122218 if k>=2 then %p A122218 prttnlst:=PartitionList(k,2); %p A122218 prttnlst:=op(prttnlst); %p A122218 end if; %p A122218 prttnlst:=prttnlst,[k,0]; %p A122218 prttnlst:=[prttnlst]; %p A122218 #print("PascalLU: n, k, prttnlst:",n,k,prttnlst); %p A122218 for i from 1 to nops(prttnlst) do %p A122218 prttn:=op(i,prttnlst); %p A122218 l:=op(1,prttn); %p A122218 u:=op(2,prttn); %p A122218 #print("PascalLU: i, prttn, l, u:",i,prttn,l,u); %p A122218 if l <= nl and u <= nv then %p A122218 result:=result+binomial(nl,l)*binomial(u,u); %p A122218 end if; %p A122218 swap:=u; u:=l; l:=swap; %p A122218 if l <> u and l <= nl and u <= nv then %p A122218 result:=result+binomial(nl,l)*binomial(u,u); %p A122218 end if; %p A122218 end do; %p A122218 #print("n,k,result",n,k,summe) %p A122218 end proc; %p A122218 PartitionList := proc (n, k) %p A122218 # Herbert S. Wilf and Joanna Nordlicht, %p A122218 # Lecture Notes "East Side West Side,..." %p A122218 # Available from Wilf link. %p A122218 # Calculates the partitions of n into k parts. %p A122218 # E.g. PartitionList(5,2) --> [[4, 1], [3, 2]]. %p A122218 local East, West; %p A122218 if n < 1 or k < 1 or n < k then %p A122218 RETURN([]) %p A122218 elif n = 1 then %p A122218 RETURN([[1]]) %p A122218 else if n < 2 or k < 2 or n < k then %p A122218 West := [] %p A122218 else %p A122218 West := map(proc (x) options operator, arrow; %p A122218 [op(x), 1] end proc,PartitionList(n-1,k-1)) end if; %p A122218 if k <= n-k then %p A122218 East := map(proc (y) options operator, arrow; %p A122218 map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k)) %p A122218 else East := [] end if; %p A122218 RETURN([op(West), op(East)]) %p A122218 end if; %p A122218 end proc; %o A122218 (PARI) A122218(n,k) = if(n>1, binomial(n,k)-binomial(n-2,k-1), 0) \\ _M. F. Hasler_, Jan 06 2024 %Y A122218 Cf. A007318, A000124, A004006, A007283. %Y A122218 Cf. A072405 (essentially the same). %K A122218 nonn,tabl %O A122218 0,8 %A A122218 _Thomas Wieder_, Aug 27 2006