cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A372917 a(n) is the number of distinct rectangles with area n whose vertices lie on points of a unit square grid.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 1, 4, 2, 5, 1, 5, 2, 3, 3, 5, 2, 5, 1, 8, 2, 3, 1, 7, 3, 5, 2, 5, 2, 9, 1, 6, 2, 5, 3, 8, 2, 3, 3, 11, 2, 6, 1, 5, 5, 3, 1, 9, 2, 8, 3, 8, 2, 6, 3, 7, 2, 5, 1, 15, 2, 3, 3, 7, 5, 6, 1, 8, 2, 9, 1, 11, 2, 5, 5, 5, 2, 9, 1, 14, 3, 5, 1, 10, 5, 3
Offset: 1

Views

Author

Felix Huber, Jun 08 2024

Keywords

Comments

A rectangle in the square unit grid has the sides W = w*sqrt(r) and H = h*sqrt(r). The area is therefore n = w*h*r. Let r be a squarefree divisor of n that can be written as the sum of two squares x^2 + y^2. The number of distinct rectangles is then the sum of the number of ways for each value of r to decompose n/r into two factors w and h (with w >= h).

Examples

			See also the linked illustrations of the terms a(4) = 3, a(8) = 4, a(15) = 3.
n = 4 has the three divisors 1, 2, 4. Since 4 is not squarefree, r can have the values 1 or 2. For r = 1 = 1^2 + 0^2 there are two rectangles (2,2), (4,1). For r = 2 = 1^2 + 1^2 and n/r = 4/2 = 2 = w*h there is the rectangle (2*sqrt(2), 1*sqrt(2)). That's a total of a(4) = 3 distinct rectangles.
n = 8 has the four divisors 1, 2, 4, 8. Since 4 and 8 are not squarefree, r can have the values 1 or 2. For r = 1 = 1^2 + 0^2 there are two rectangles (4,2), (8,1). For r = 2 = 1^2 + 1^2 and n/r = 8/2 = 4 = w*h there are the rectangles (4*sqrt(2), 1*sqrt(2)) and (2*sqrt(2), 2*sqrt(2)). That's a total of a(8) = 4 distinct rectangles.
n = 15 has the four divisors 1, 3, 5, 15. They are all squarefree, but 3 and 15 cannot be written as a sum of two squares, r can only have the values 1 or 5. For r = 1 = 1^2 + 0^2 there are two rectangles (5,3), (15,1). For r = 5 = 2^2 + 1^2 and n/r = 15/5 = 3 = w*h there is the rectangles (3*sqrt(5), 1*sqrt(5)). That's a total of a(15) = 3 distinct rectangles.
		

Crossrefs

Programs

  • Maple
    A372917:= proc(n)
        local f,i,prod;
        f:=ifactors(n)[2];
        prod:=1;
        for i from 1 to numelems(f) do
            if f[i][1] mod 4 = 3 then
                prod:=prod*(1*f[i][2]+1);
            else
                prod:=prod*(2*f[i][2]+1);
            end if;
        end do;
        return round(prod/2);
    end proc;
    seq(A372917(n),n=1..86);
  • PARI
    a(n) = my(f=factor(n)); prod(i=1,#f[,1], if(f[i,1]%4==3,1,2)*f[i,2] + 1) \/ 2; \\ Kevin Ryde, Jun 09 2024

Formula

a(n) = ceiling(Product_{i=1..omega(n)}(k[i]*e[i] + 1)/2), with k[i] = 2 if p[i] mod 4 = 3 and k[i] = 1 else, where p[i]^e[i] is the prime factorization of n.
Showing 1-1 of 1 results.