cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122276 If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i).

This page as a plain text file.
%I A122276 #7 Apr 18 2017 18:25:51
%S A122276 1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,0,0,1,0,0,1,0,0,1,1,
%T A122276 0,1,1,0,0,0,0,1,1,0,0,0,1,0,0,1,1,1,0,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0,
%U A122276 0,0,1,1,0,0,1,1,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,1,1,0,1,1,0,0,0,1,0,0,1
%N A122276 If b(n-1) + b(n-2) < n then a(n) = 0, otherwise a(n) = 1, where b(i) = A096535(i).
%C A122276 Conjecture: lim {n -> infinity} x_n / y_n = 1, where x_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) and y_n is the number of j <= n such that A096535(j) = A096535(j-1) + A096535(j-2) - j. Computational support: x_n / y_n = 0.9999917 for n = 10^9.
%H A122276 G. C. Greubel, <a href="/A122276/b122276.txt">Table of n, a(n) for n = 2..1000</a>
%F A122276 a(n) = floor((A096535(n-1)+A096535(n-2))/n)
%t A122276 f[s_] := f[s] = Append[s, Mod[s[[ -2]] + s[[ -1]], Length[s]]]; t = Nest[f, {1, 1}, 106]; s = {}; Do[AppendTo[s, If[t[[n]] + t[[n + 1]] < n + 1, 0, 1]], {n, 105}]; s (* _Robert G. Wilson v_ Sep 02 2006 *)
%o A122276 (PARI) {m=107;a=1;b=1;for(n=2,m,d=divrem(a+b,n);print1(d[1],",");a=b;b=d[2])}
%Y A122276 Cf. A096535, A122277.
%K A122276 nonn
%O A122276 2,1
%A A122276 _Klaus Brockhaus_, Aug 29 2006