This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122367 #146 May 10 2025 18:49:05 %S A122367 1,2,5,13,34,89,233,610,1597,4181,10946,28657,75025,196418,514229, %T A122367 1346269,3524578,9227465,24157817,63245986,165580141,433494437, %U A122367 1134903170,2971215073,7778742049,20365011074,53316291173,139583862445,365435296162,956722026041 %N A122367 Dimension of 3-variable non-commutative harmonics (twisted derivative) of order n. The dimension of the space of non-commutative polynomials of degree n in 3 variables which are killed by all symmetric differential operators (where for a monomial w, d_{xi} ( xi w ) = w and d_{xi} ( xj w ) = 0 for i != j). %C A122367 Essentially identical to A001519. %C A122367 From _Matthew Lehman_, Jun 14 2008: (Start) %C A122367 Number of monotonic rhythms using n time intervals of equal duration (starting with n=0). %C A122367 Representationally, let 0 be an interval which is "off" (rest), %C A122367 1 an interval which is "on" (beep), %C A122367 1 1 two consecutive "on" intervals (beep, beep), %C A122367 1 0 1 (beep, rest, beep) and %C A122367 1-1 two connected consecutive "on" intervals (beeeep). %C A122367 For f(3)=13: %C A122367 0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1-1, 1 0 0, 1 0 1, %C A122367 1 1 0, 1-1 0, 1 1 1, 1 1-1, 1-1 1, 1-1-1. %C A122367 (End) %C A122367 Equivalent to the number of one-dimensional graphs of n nodes, subject to the condition that a node is either 'on' or 'off' and that any two neighboring 'on' nodes can be connected. - _Matthew Lehman_, Nov 22 2008 %C A122367 Sum_{n>=0} arctan(1/a(n)) = Pi/2. - _Jaume Oliver Lafont_, Feb 27 2009 %C A122367 This is the limit sequence for certain generalized Pell numbers. - _Gregory L. Simay_, Oct 21 2024 %H A122367 Colin Barker, <a href="/A122367/b122367.txt">Table of n, a(n) for n = 0..1000</a> %H A122367 Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/37-40-2012/azarianIJCMS37-40-2012.pdf">Fibonacci Identities as Binomial Sums</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 38, 2012, pp. 1871-1876 (See Corollary 1 (ii)). %H A122367 Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html">The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences</a>, J. Int. Seq. 13 (2010) # 10.8.2, Example 13. %H A122367 N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki, <a href="https://arxiv.org/abs/math/0502082">Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables</a>, arXiv:math/0502082 [math.CO], 2005; Canad. J. Math. 60 (2008), no. 2, 266-296 %H A122367 C. Chevalley, <a href="http://www.jstor.org/stable/2372597">Invariants of finite groups generated by reflections</a>, Amer. J. Math. 77 (1955), 778-782. %H A122367 I. M. Gessel and Ji Li, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Gessel/gessel6.html">Compositions and Fibonacci identities</a>, J. Int. Seq. 16 (2013) 13.4.5. %H A122367 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A122367 Ron Knott, <a href="http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibpi.html">Pi and the Fibonacci numbers</a>. - _Jaume Oliver Lafont_, Feb 27 2009 %H A122367 Diego Marques and Alain Togbé, <a href="http://dx.doi.org/10.3792/pjaa.86.174">On the sum of powers of two consecutive Fibonacci numbers</a>, Proc. Japan Acad. Ser. A Math. Sci., Volume 86, Number 10 (2010), 174-176. %H A122367 H. C. Williams and R. K. Guy, <a href="https://doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory, Vol. 7, No. 5 (2011), pp. 1255-1277. %H A122367 H. C. Williams and R. K. Guy, <a href="https://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a>, Integers, Volume 12A (2012), The John Selfridge Memorial Volume. %H A122367 M. C. Wolf, <a href="http://dx.doi.org/10.1215/S0012-7094-36-00253-3">Symmetric functions of noncommutative elements</a>, Duke Math. J. 2 (1936), 626-637. %H A122367 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1). %F A122367 G.f.: (1-q)/(1-3*q+q^2). More generally, (Sum_{d=0..n} (n!/(n-d)!*q^d)/Product_{r=1..d} (1 - r*q)) / (Sum_{d=0..n} q^d/Product_{r=1..d} (1 - r*q)) where n=3. %F A122367 a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 2. %F A122367 a(n) = Fibonacci(2n+1) = A000045(2n+1). - _Philippe Deléham_, Feb 11 2009 %F A122367 a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5)) + (1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5). - _Colin Barker_, Oct 14 2015 %F A122367 a(n) = Sum_{k=0..n} Sum_{i=0..n} binomial(k+i-1, k-i). - _Wesley Ivan Hurt_, Sep 21 2017 %F A122367 a(n) = A048575(n-1) for n >= 1. - _Georg Fischer_, Nov 02 2018 %F A122367 a(n) = Fibonacci(n)^2 + Fibonacci(n+1)^2. - _Michel Marcus_, Mar 18 2019 %F A122367 a(n) = Product_{k=1..n} (1 + 4*cos(2*k*Pi/(2*n+1))^2). - _Seiichi Manyama_, Apr 30 2021 %F A122367 From _J. M. Bergot_, May 27 2022: (Start) %F A122367 a(n) = F(n)*L(n+1) + (-1)^n where L(n)=A000032(n) and F(n)=A000045(n). %F A122367 a(n) = (L(n)^2 + L(n)*L(n+2))/5 - (-1)^n. %F A122367 a(n) = 2*(area of a triangle with vertices at (L(n-1), L(n)), (F(n+1), F(n)), (L(n+1), L(n+2))) - 5*(-1)^n for n > 1. (End) %F A122367 G.f.: (1-x)/(1-3x+x^2) = 1/(1-2x-x^2-x^3-x^4-...) - _Gregory L. Simay_, Oct 21 2024 %F A122367 E.g.f.: exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - _Stefano Spezia_, Nov 07 2024 %F A122367 From _Peter Bala_, May 04 2025: (Start) %F A122367 a(n) = sqrt(2/5) * sqrt( 1 - T(2*n+1, - 3/2) ), where T(k, x) denotes the k-th Chebyshev polynomial of the first kind. %F A122367 a(2*n+1/2) = sqrt(5)*a(n)^2 - 2/sqrt(5). %F A122367 a(3*n+1) = 5*a(n)^3 - 3*a(n); hence a(n) divides a(3*n+1). %F A122367 a(4*n+3/2) = 5^(3/2)*a(n)^4 - 4*sqrt(5)*a(n)^2 + 2/sqrt(5). %F A122367 a(5*n+2) = (5^2)*a(n)^5 - 5*5*a(n)^3 + 5*a(n); hence a(n) divides a(5*n+2). %F A122367 See A034807 for the unsigned coefficients [1, 2; 1, 3; 1, 4, 2; 1, 5, 5; ...]. %F A122367 In general, for k >= 0, a(k*n + (k-1)/2) = a(-1/2) * T(k, a(n)/a(-1/2)), where a(n) = (2^(-1-n)*((3 - sqrt(5))^n *(-1 + sqrt(5)) + (1 + sqrt(5))*(3 + sqrt(5))^n)) / sqrt(5), as given above, and a(-1/2) = 2/sqrt(5). %F A122367 The aerated sequence [b(n)]n>=1 = [1, 0, 2, 0, 5, 0, 13, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -5, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. %F A122367 Sum_{n >= 1} 1/(a(n) - 1/a(n)) = 1 (telescoping series: for n >= 1, 1/(a(n) - 1/a(n)) = 1/A001906(n) - 1/A001906(n+1).) (End) %e A122367 a(1) = 2 because x1-x2, x1-x3 are both of degree 1 and are killed by the differential operator d_x1 + d_x2 + d_x3. %e A122367 a(2) = 5 because x1*x2 - x3*x2, x1*x3 - x2*x3, x2*x1 - x3*x1, x1*x1 - x2*x1 - x2*x2 + x1*x2, x1*x1 - x3*x1 - x3*x3 + x3*x1 are all linearly independent and are killed by d_x1 + d_x2 + d_x3, d_x1 d_x1 + d_x2 d_x2 + d_x3 d_x3 and Sum_{j = 1..3} (d_xi d_xj, i). %p A122367 a:=n->if n=0 then 1; elif n=1 then 2 else 3*a(n-1)-a(n-2); fi; %p A122367 A122367List := proc(m) local A, P, n; A := [1,2]; P := [2]; %p A122367 for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-1]]); %p A122367 A := [op(A), P[-1]] od; A end: A122367List(30); # _Peter Luschny_, Mar 24 2022 %t A122367 Table[Fibonacci[2 n + 1], {n, 0, 30}] (* _Vincenzo Librandi_, Jul 04 2015 *) %o A122367 (Magma) [Fibonacci(2*n+1): n in [0..40]]; // _Vincenzo Librandi_, Jul 04 2015 %o A122367 (PARI) Vec((1-x)/(1-3*x+x^2) + O(x^50)) \\ _Michel Marcus_, Jul 04 2015 %Y A122367 Cf. A001519, A048575, A055105, A055107, A087903, A074664, A008277, A106729, A112340, A122368, A122369, A122370, A122371, A122372. %Y A122367 Cf. similar sequences listed in A238379. %K A122367 nonn,easy %O A122367 0,2 %A A122367 _Mike Zabrocki_, Aug 30 2006