cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122380 Numbers k such that k^2 > P(k)!, where P(k) is the greatest prime factor of k.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 135, 140, 144, 147, 150, 160, 162, 168, 175, 180, 189, 192, 196, 200, 210, 216, 224, 225, 240, 243, 245
Offset: 1

Views

Author

Jonathan Sondow, Sep 03 2006

Keywords

Comments

It is conjectured that k^2 < P(k)! for almost all k.

Examples

			15^2 = 225 > 120 = 5! = P(15)!, so 15 is a member.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 2, n <= 250, n++, If[n^2 > FactorInteger[n][[-1, 1]]!, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Feb 04 2019 *)
  • PARI
    smooth(P:vec, lim)=my(v=List([1]), nxt=vector(#P, i, 1), indx, t); while(1, t=vecmin(vector(#P, i, v[nxt[i]]*P[i]), &indx); if(t>lim, break); if(t>v[#v], listput(v, t)); nxt[indx]++); Vec(v)
    list(lim)=my(v=List([2]),u,lower,upper=2,p=2); while(1, lower=upper+1; p=nextprime(p+1); upper=min(sqrtint(p!), lim); if(lower>lim, break); u=select(q->q>=lower, smooth(primes([2,p-1]),upper)); for(i=1,#u, listput(v,u[i]))); Vec(v) \\ Charles R Greathouse IV, Nov 09 2021