This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122395 #9 Mar 12 2023 08:49:27 %S A122395 3,5,7,17,19,31,41,53,109,127,271,293,499,811,929,2027,2161,3659,4373, %T A122395 4421,4969,8191,9311,10099,13121,13309,16001,17029,19181,22051,32579, %U A122395 38611,57839,72091,78607,93941,109229,128521,131071,143261,157211 %N A122395 Primes of the form p^k - p^(k-1) - 1, with p prime and k>1. %C A122395 The paper by Stein and Williams gives a method for finding primes of this form when k>(p+1)/2. %H A122395 Robert Israel, <a href="/A122395/b122395.txt">Table of n, a(n) for n = 1..10000</a> %H A122395 Andreas Stein and H. C. Williams, <a href="https://doi.org/10.1090/S0025-5718-00-01212-6">Explicit primality criteria for (p-1)p^n-1</a>, Math. Comp. 69 (2000), 1721-1734. %p A122395 N:= 10^6: # for terms <= N %p A122395 p:= 1: R:= NULL: %p A122395 do %p A122395 p:= nextprime(p); %p A122395 if p^2 - p - 1 > N then break fi; %p A122395 for k from 2 do %p A122395 q:= p^k - p^(k-1)-1; %p A122395 if q > N then break fi; %p A122395 if isprime(q) then R:= R, q fi; %p A122395 od od: %p A122395 sort(convert({R},list)); # _Robert Israel_, Mar 12 2023 %t A122395 nn=10^6; lst={}; n=1; While[p=Prime[n]; k=2; While[m=p^k-p^(k-1)-1; m<nn, If[PrimeQ[m], AppendTo[lst,m]]; k++ ]; k>2, n++ ]; lst=Union[lst] %Y A122395 Cf. A122396. %K A122395 nonn %O A122395 1,1 %A A122395 _T. D. Noe_, Aug 31 2006