This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122414 #11 May 24 2025 02:44:05 %S A122414 0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1, %T A122414 0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1, %U A122414 1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,0,0 %N A122414 Triangle T(n,k) for 1 <= k <= n read by rows, where T(n,k) = 1 if gcd(n,k) is prime, 0 otherwise. %F A122414 T(n,n) = A010051(n). %F A122414 T(n,1) = 0. %e A122414 The triangle starts %e A122414 0 %e A122414 0 1 %e A122414 0 0 1 %e A122414 0 1 0 0 %e A122414 0 0 0 0 1 %e A122414 0 1 1 1 0 0 %e A122414 0 0 0 0 0 0 1 %e A122414 0 1 0 0 0 1 0 0 %e A122414 0 0 1 0 0 1 0 0 0 %e A122414 0 1 0 1 1 1 0 1 0 0 %e A122414 0 0 0 0 0 0 0 0 0 0 1 %e A122414 0 1 1 0 0 0 0 0 1 1 0 0 %e A122414 0 0 0 0 0 0 0 0 0 0 0 0 1 %e A122414 0 1 0 1 0 1 1 1 0 1 0 1 0 0 %e A122414 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0 %p A122414 A122414 := proc(n,k) %p A122414 if isprime(igcd(n,k)) then %p A122414 1; %p A122414 else %p A122414 0; %p A122414 end if; %p A122414 end proc: # _R. J. Mathar_, Apr 21 2021 %t A122414 row[n_] := Boole[PrimeQ[GCD[n, Range[n]]]]; Array[row, 14] // Flatten (* _Amiram Eldar_, May 23 2025 *) %o A122414 (PARI) {m=14; v=vector(m,x,vector(x)); for(n=1,m,for(k=1,n,if(isprime(gcd(n,k)),v[n][k]=1))); for(n=1,m,for(k=1,n,print1(v[n][k],",")))} %Y A122414 Cf. A010051 (diagonal), A122415 (sub-triangle). %Y A122414 Row sums are in A117494. [From _Klaus Brockhaus_, May 29 2009] %K A122414 nonn,tabl,easy %O A122414 1,1 %A A122414 _Klaus Brockhaus_, Sep 03 2006