This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122432 #25 Sep 08 2022 08:45:28 %S A122432 1,-3,1,6,-3,1,-10,6,-3,1,15,-10,6,-3,1,-21,15,-10,6,-3,1,28,-21,15, %T A122432 -10,6,-3,1,-36,28,-21,15,-10,6,-3,1,45,-36,28,-21,15,-10,6,-3,1,-55, %U A122432 45,-36,28,-21,15,-10 %N A122432 Riordan array (1/(1+x)^3,x). %C A122432 Sequence array for (-1)^n*C(n+2,2). Inverse of A122431. Row sums are -A083392(n+1). Antidiagonal sums are (-1)^n*A002623(n). %C A122432 Call the unsigned version of this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array %C A122432 /I_k 0\ %C A122432 \ 0 M/ %C A122432 having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A127893. - _Peter Bala_, Jul 22 2014 %C A122432 From _Wolfdieter Lang_, Apr 05 2020: (Start) %C A122432 Triangle T(n, k) has the k=0 column (-1)^n*A000217(n+1) = (-1)^n*binomial(n+2, 2), then repeated and down-shifted. %C A122432 The unsigned triangle, i.e., Tup(n, k) := (-1)^(n-k)*T(n-1,k-1) = binomial(n-k+2, 2) with n >= 1, k = 1..n, gives the number of triangles of length k (in some units), for k = 1..n, in the matchstick arrangement (or tower of cards, with n cards as basis) with an enclosing triangle of length n, but only triangles with orientation (up) like the enclosing triangle are counted. The total number of matchsticks (cards) is 3*A000217(n). (See the comment by _Andrew Howroyd_ in A085691). Recurrence: Tup(n, k) = 0 for n < k, Tup(1, 1) = 1, and Tup(n, k) = Tup(n-1, k) + n - k + 1, for n >= 2, k = 1..n. Row sums give A000292(n). (End) %H A122432 G. C. Greubel, <a href="/A122432/b122432.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A122432 Number triangle T(n, k) = [k<=n]*(-1)^(n-k)*binomial(n-k+2, 2). %F A122432 Recurrence: T(n, k) = - T(n-1, k) + (-1)^(n-k)*(n-k+1), for n >= 0, and k = 0..n. - _Wolfdieter Lang_, Apr 06 2020 %e A122432 The triangle T(n, k) begins: %e A122432 n\k 0 1 2 3 4 5 6 7 8 9 ... %e A122432 ------------------------------------------- %e A122432 0: 1 %e A122432 1 :-3 1 %e A122432 2: 6 -3 1 %e A122432 3: -10 6 -3 1 %e A122432 4: 15 -10 6 -3 1 %e A122432 5; -21 15 -10 6 -3 1 %e A122432 6: 28 -21 15 -10 6 -3 1 %e A122432 7: -36 28 -21 15 -10 6 -3 1 %e A122432 8: 45 -36 28 -21 15 -10 6 -3 1 %e A122432 9: -55 45 -36 28 -21 15 -10 6 -3 1 %e A122432 ... reformattet by - _Wolfdieter Lang_, Apr 05 2020 %t A122432 Table[(-1)^(n - k)*Binomial[n - k + 2, 2], {n, 0, 49}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Oct 29 2017 *) %o A122432 (PARI) for(n=0,10, for(k=0,n, print1((-1)^(n-k)*binomial(n-k+2,2), ", "))) \\ _G. C. Greubel_, Oct 29 2017 %o A122432 (Magma) /* As triangle */ [[(-1)^(n-k)*Binomial(n-k+2, 2): k in [1..n]]: n in [1..10]]; // _G. C. Greubel_, Oct 29 2017 %Y A122432 Cf. A000217, A000292, A083392, A085691, A122431, A127893. %K A122432 easy,sign,tabl %O A122432 0,2 %A A122432 _Paul Barry_, Sep 04 2006