cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122450 Diagonal above central terms of pendular trinomial triangle A122445, ignoring leading zeros.

This page as a plain text file.
%I A122450 #6 Mar 17 2021 15:32:42
%S A122450 1,3,12,47,189,773,3208,13478,57222,245134,1058348,4600571,20118753,
%T A122450 88450897,390721560,1733348234,7719287578,34497374034,154659735720,
%U A122450 695397289078,3135087583426,14168892518258,64181607367952
%N A122450 Diagonal above central terms of pendular trinomial triangle A122445, ignoring leading zeros.
%H A122450 G. C. Greubel, <a href="/A122450/b122450.txt">Table of n, a(n) for n = 0..1000</a>
%F A122450 G.f.: A(x) = B(x)*(B(x)-1)/(x*(1+x -x*B(x))) where B(x) is the g.f. of A122446.
%F A122450 G.f.: 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))), where f(x) = sqrt(1 -4*x -4*x^2 +4*x^4). - _G. C. Greubel_, Mar 17 2021
%t A122450 f[x_]:= Sqrt[1-4*x-4*x^2+4*x^4];
%t A122450 CoefficientList[Series[2*(1-2*x^2-f[x])/(x*(1+2*x^2+f[x])*(1-x+2*x^2+2*x^3+(1+x)*f[x])), {x,0,30}], x] (* _G. C. Greubel_, Mar 17 2021 *)
%o A122450 (PARI) {a(n)=local(A,B=2/(1+2*x^2+sqrt(1-4*x-4*x^2+4*x^4+x^2*O(x^n)))); A=B*(B-1)/x/(1+x-x*B);polcoeff(A,n,x)}
%o A122450 (Sage)
%o A122450 def f(x): return sqrt(1-4*x-4*x^2+4*x^4)
%o A122450 def A122449_list(prec):
%o A122450     P.<x> = PowerSeriesRing(QQ, prec)
%o A122450     return P( 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))) ).list()
%o A122450 A122449_list(30) # _G. C. Greubel_, Mar 17 2021
%o A122450 (Magma)
%o A122450 R<x>:=PowerSeriesRing(Rationals(), 30);
%o A122450 f:= func< x | Sqrt(1-4*x-4*x^2+4*x^4) >;
%o A122450 Coefficients(R!( 2*(1-2*x^2-f(x))/(x*(1+2*x^2+f(x))*(1-x+2*x^2+2*x^3+(1+x)*f(x))) )); // _G. C. Greubel_, Mar 17 2021
%Y A122450 Cf. A122445, A122446, A122447, A122448, A122449, A122451, A122452.
%K A122450 nonn
%O A122450 0,2
%A A122450 _Paul D. Hanna_, Sep 07 2006