A122454 A triangle with shape A000041 defined by sequence A098546 times sequence A036040.
1, 2, 1, 3, 9, 1, 4, 24, 18, 24, 1, 5, 50, 100, 100, 150, 50, 1, 6, 90, 225, 150, 300, 1200, 300, 300, 675, 90, 1, 7, 147, 441, 735, 735, 3675, 2450, 3675, 1225, 7350, 3675, 735, 2205, 147, 1, 8, 224, 784, 1568, 980, 1568, 9408, 15680, 11760, 15680, 3920, 29400
Offset: 1
Examples
A098546(n) begins 1 2 1 3 3 1 4 6 6 4 1 ... A036040(n) begins 1 1 1 1 3 1 1 4 3 6 1 ... So the triangle begins: 1; 2, 1; 3, 9, 1; 4, 24, 18, 24, 1; 5, 50, 100, 100, 150, 50, 1; 6, 90, 225, 150, 300, 1200, 300, 300, 675, 90, 1; 7, 147, 441, 735, 735, 3675, 2450, 3675, 1225, 7350, 3675, 735, 2205, 147, 1;
Crossrefs
Cf. A122455.
Programs
-
Maple
sortAbrSteg := proc(L1,L2) local i ; if nops(L1) < nops(L2) then RETURN(true) ; elif nops(L2) < nops(L1) then RETURN(false) ; else for i from 1 to nops(L1) do if op(i,L1) < op(i,L2) then RETURN(false) ; fi ; od ; RETURN(true) ; fi ; end: A098546 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then m := nops(op(k,prts)) ; binomial(n,m) ; else 0 ; fi ; end: M3 := proc(L) local n,k,an,resul; n := add(i,i=L) ; resul := factorial(n) ; for k from 1 to n do an := add(1-min(abs(j-k),1),j=L) ; resul := resul/ (factorial(k))^an /factorial(an) ; od ; end: A036040 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then M3(op(k,prts)) ; else 0 ; fi ; end: A122454 := proc(n,k) A098546(n,k)*A036040(n,k) ; end: for n from 1 to 10 do for k from 1 to combinat[numbpart](n) do a:=A122454(n,k) ; printf("%d, ",a) ; od; od ; # R. J. Mathar, Jul 17 2007
Extensions
More terms from R. J. Mathar, Jul 17 2007
Comments