This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122486 #17 May 05 2019 00:32:51 %S A122486 1,1,5,39,425,6053,107735,2321469,59152987,1750362419,59286010621, %T A122486 2271617296347,97502863649141,4649359584613201,244550369307356039, %U A122486 14101227268075911837,886551391533830227267,60482082002935189216499 %N A122486 a(n) = Sum_{k=0..n} |Stirling1(n,k)|*Bell(k)^2. %C A122486 Row sums of the absolute values of the triangle of Stirling1(n,k)*Bell(k)^2: %C A122486 1; %C A122486 0, 1; %C A122486 0, -1, 4; %C A122486 0, 2, -12, 25; %C A122486 0, -6, 44, -150, 225; %C A122486 0, 24, -200, 875, -2250, 2704; %C A122486 0, -120, 1096, -5625, 19125, -40560, 41209; %C A122486 0, 720, -7056, 40600, -165375, 473200, -865389, 769129; %C A122486 ... - _R. J. Mathar_, Jan 27 2017 %F A122486 a(n) = exp(-2)*Sum_{r,s>=0} [r*s]^n/(r!*s!), where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial. %F A122486 E.g.f.: Sum_{n>=0} exp( 1/(1-x)^n - 2 ) / n!. - _Paul D. Hanna_, Jul 25 2018 %p A122486 with(combinat): seq(sum(abs(stirling1(n,k))*bell(k)^2,k=0..n),n=0..19); # _Emeric Deutsch_, Oct 08 2006 %Y A122486 Cf. A000110, A059849. %K A122486 nonn,easy %O A122486 0,3 %A A122486 _Vladeta Jovovic_, Sep 15 2006, Sep 19 2006 %E A122486 More terms from _Emeric Deutsch_, Oct 08 2006