This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122498 #22 Feb 16 2025 08:33:02 %S A122498 4,9,21,49,65,86,265,1081,1897,2513,7739,97229,128801,299426,922111, %T A122498 1221537,2839729,62608681,338356945,53406819691,2066337330754, %U A122498 6363483400447,8429820731201,432062194544201,7190854504969591,12619069972000553,16716708595637087 %N A122498 Padovan numbers that are semiprimes. %C A122498 The smallest candidate for the next term in the b-file is A000931(1958), which is composite with 239 digits and an unknown number of prime factors. - _Hugo Pfoertner_, Sep 07 2017 %H A122498 Hugo Pfoertner, <a href="/A122498/b122498.txt">Table of n, a(n) for n = 1..54</a> %H A122498 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Semiprime.html">Semiprime</a> %p A122498 select(x-> numtheory[bigomega](x)=2, [(<<0|1|0>, %p A122498 <0|0|1>, <1|1|0>>^i)[1$2]$i=0..300])[]; # _Alois P. Heinz_, Aug 31 2017 %t A122498 SemiprimeQ[1] := False SemiprimeQ[n_Integer] := Plus @@ (Last /@ FactorInteger[n]) == 2 a = Table[ SeriesCoefficient[ Series[x/(1 - x^2 - x^3), {x, 0, 50}], n], {n, 0, 50}] f[n_] = If[SemiprimeQ[a[[n]]] == True, a[[n]], {}] Flatten[Table[f[n], {n, 1, Length[a]}]] %Y A122498 Cf. A000931, A001358, A053409, A100891. %K A122498 nonn %O A122498 1,1 %A A122498 _Roger L. Bagula_, Sep 15 2006 %E A122498 More terms from _Alois P. Heinz_, Aug 31 2017