cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122523 Coefficients of series giving the best rational approximations to e.

This page as a plain text file.
%I A122523 #8 Oct 27 2024 09:26:39
%S A122523 7,497,71071,18107089,7216769351,4145592145057,3243346361740927,
%T A122523 3315690551047089761,4291382388990897826759,6858633609184481948847121,
%U A122523 13266034908146716343647359647,30540929340877940990799507474097
%N A122523 Coefficients of series giving the best rational approximations to e.
%C A122523 The series giving the best rational approximations to e is e = 3 - 2/a(1) + 2/a(2) - 2/a(3) + ... The continued fraction for e is [2;1,2,1,1,4,1,1,6, 1,1,8...] and the above best approximations give every third convergent, the convergents deriving from [2;1], [2;1,2,1,1], [2;1,2,1,1,4,1, 1] and so forth.
%H A122523 G. C. Greubel, <a href="/A122523/b122523.txt">Table of n, a(n) for n = 1..200</a>
%F A122523 a(n+3) = (16*n^2 +96*n +141)*a(n+2) + (2*n+7)*(16*n^2 +64*n +61)/(2*n+3) * a(n+1) - (2*n+7)/(2*n+3) * a(n). This recurrence relationship is identical to A122533, for the best approximations to 1/e.
%t A122523 RecurrenceTable[{a[n]== ((2*n-3)*(16*n^2 -3)*a[n-1] +(2*n+1)*(16*(n-1)^2 - 3)*a[n-2] -(2*n+1)*a[n-3])/(2*n-3), a[1]==7, a[2]==497, a[3]==71071}, a, {n, 30}] (* _G. C. Greubel_, Oct 27 2024 *)
%o A122523 (Magma) I:=[7,497,71071]; [n le 3 select I[n] else ((2*n-3)*(16*n^2 -3)  *Self(n-1) +(2*n+1)*(16*(n-1)^2 -3)*Self(n-2) -(2*n+1)*Self(n-3))/(2*n-3): n in [1..30]]; // _G. C. Greubel_, Oct 27 2024
%o A122523 (SageMath)
%o A122523 @CachedFunction
%o A122523 def a(n): # a = A122523
%o A122523     if n<4: return (0,7,497,71071)[n]
%o A122523     else: return ((2*n-3)*(16*n^2 -3)*a(n-1) +(2*n+1)*(16*(n-1)^2 -3)*a(n-2) -(2*n+1)*a(n-3))/(2*n-3)
%o A122523 [a(n) for n in range(1,31)] # _G. C. Greubel_, Oct 27 2024
%Y A122523 Cf. A003417, A122533.
%K A122523 frac,nonn
%O A122523 1,1
%A A122523 _Gene Ward Smith_, Sep 17 2006