This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122528 #19 Mar 14 2018 08:47:29 %S A122528 1,7,17,76,22,57,137,117,307,671,412,1279,767,35926,50915,35453,24297, %T A122528 114094,12259,37949,459722 %N A122528 Minimal number k such that (2k)^(2^n) + 1 is prime, but (2k)^(2^m) + 1 is composite for m < n. %C A122528 A079706(a(n)) = 2^n which is the first occurrence of 2^n in A079706. %C A122528 Corresponding primes A084712(a(n)) are {3, 197, 1336337, 284936905588473857, 197352587024076973231046657, ...}. %H A122528 Yves Gallot et al., <a href="http://pagesperso-orange.fr/yves.gallot/primes/results.html">Generalized Fermat Prime Search</a> %H A122528 PrimeGrid, <a href="http://www.primegrid.com/gfn_history.php">GFN Prime Search Status and History</a>. %e A122528 a(0) = 1 because (2*1)^(2^0) + 1 = 2 + 1 = 3 is prime. %e A122528 a(1) = 7 because (2*7)^(2^1) + 1 = 14^2 + 1 = 197 is prime but 14 + 1 = 15 is composite. %o A122528 (PARI) a(n)=for(k=1,+oo,if(ispseudoprime((2*k)^(2^n)+1),for(m=0,n-1,ispseudoprime((2*k)^(2^m)+1)&&next(2));return(k))) \\ _Jeppe Stig Nielsen_, Mar 10 2018 %Y A122528 Cf. A079706, A084712. %Y A122528 Cf. A056993. %K A122528 hard,more,nonn %O A122528 0,2 %A A122528 _Alexander Adamchuk_, Sep 17 2006 %E A122528 Definition corrected by _T. D. Noe_, May 14 2008 %E A122528 a(9) through a(16) from the extensive tables of generalized Fermat primes compiled by Yves Gallot and others. - _T. D. Noe_, May 14 2008 %E A122528 a(17)-a(20) from _Jeppe Stig Nielsen_, Mar 10 2018