This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122553 #52 Aug 06 2024 21:35:54 %S A122553 1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A122553 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A122553 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A122553 a(0)=1, a(n)=3 for n > 0. %C A122553 Continued fraction for (sqrt(13) - 1)/2 = A223139. %C A122553 Decimal expansion of 4/30. - _Alonso del Arte_, Aug 16 2012 %C A122553 4/3 is the volume of the regular octahedron inscribed in the unit-radius sphere. - _Amiram Eldar_, Jun 02 2023 %D A122553 Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Springer, 2013, pp. 95-96, 224. %H A122553 Jun Yan, <a href="https://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv:2404.07958 [math.CO], 2024. See p. 4. %H A122553 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A122553 a(n) = 3 - 2*0^n. %F A122553 G.f.: (1 + 2*x)/(1 - x). %F A122553 Sum_{n >= 0} a(n)*10^(-n) = 4/3. %F A122553 From _Amiram Eldar_, Jun 05 2021: (Start) %F A122553 4/3 = Product_{k>=1} (1 + 1/2^(2^k)). %F A122553 4/3 = Sum_{k>=0} binomial(2*k,k)/((k+2)*4^k). (End) %F A122553 Sum_{k>0} 3*k/4^k = 4/3 [Nicole Oresme]. - _Stefano Spezia_, Jun 27 2024 %F A122553 K_{n>=3} n/(n-2) = 4/3 (see Clawson at p. 224). - _Stefano Spezia_, Jul 01 2024 %F A122553 E.g.f.: 3*exp(x) - 2. - _Elmo R. Oliveira_, Aug 05 2024 %t A122553 RealDigits[4/3, 10, 105][[1]] (* _Alonso del Arte_, Aug 16 2012 *) %t A122553 PadRight[{1},120,3] (* _Harvey P. Dale_, Jul 21 2023 *) %o A122553 (PARI) a(n)=(n>=0)+2*(n>0) \\ _Jaume Oliver Lafont_, Mar 26 2009 %Y A122553 Cf. A118273 (cube), A339259 (regular icosahedron), A363437 (regular tetrahedron), A363438 (regular dodecahedron). %Y A122553 Cf. A223139. %K A122553 nonn,cofr,easy,cons %O A122553 0,2 %A A122553 _Philippe Deléham_, Sep 20 2006