This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122572 #46 Oct 29 2024 03:28:25 %S A122572 1,1,-15,209,-2911,40545,-564719,7865521,-109552575,1525870529, %T A122572 -21252634831,296011017105,-4122901604639,57424611447841, %U A122572 -799821658665135,11140078609864049,-155161278879431551,2161117825702177665,-30100488280951055759,419245718107612602961 %N A122572 a(n) = -14*a(n-1) - a(n-2), with a(1) = a(2) = 1. %C A122572 Characteristic polynomial associated with the elliptic cubic invariant x^8 + 14*x^4 + 1. %D A122572 Henry MacKean and Victor Moll, Elliptic Curves, Cambridge University Press, New York, 1997, page 22 %H A122572 Indranil Ghosh, <a href="/A122572/b122572.txt">Table of n, a(n) for n = 1..874</a> %H A122572 Gareth Jones and David Singerman, <a href="http://blms.oxfordjournals.org/content/28/6/561.extract">Belyi Functions, Hypermaps and Galois Groups</a>, Bull. London Math. Soc., 28 (1996), 561-590. %H A122572 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A122572 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-14,-1). %F A122572 G.f.: x*(1+15*x)/(1+14*x+x^2). - _Philippe Deléham_, Nov 16 2008 [Corrected by _Richard Choulet_, Nov 21 2008] %F A122572 a(n) = ((3+2*sqrt(3))/6)*(-7+4*sqrt(3))^(n-1)+((3-2*sqrt(3))/6)*(-7-4*sqrt(3))^(n-1) (n>=1). - _Richard Choulet_, Nov 21 2008 %F A122572 a(n) = (-1)^n*A028230(n-1), n>1. - _R. J. Mathar_, Mar 19 2009 %F A122572 a(n) = b such that (-1)^(2*n-3)*Integral_{x=0..Pi/2} cos((2*n-3)*x)/(2+sin(x)) dx = c + b*(log(2)-log(3)). - _Francesco Daddi_, Aug 01 2011 %F A122572 E.g.f.: 15 - exp(-7*x)*( 15*cosh(4*sqrt(3)*x) + (26*sqrt(3)/3)*sinh(4*sqrt(3)*x) ). - _G. C. Greubel_, Oct 29 2024 %t A122572 LinearRecurrence[{-14,-1},{1,1},30] (* _Harvey P. Dale_, Jul 30 2013 *) %o A122572 (Magma) [n le 2 select 1 else -14*Self(n-1) -Self(n-2): n in [1..41]]; // _G. C. Greubel_, Oct 29 2024 %o A122572 (SageMath) %o A122572 A122572=BinaryRecurrenceSequence(-14,-1,1,1) %o A122572 [A122572(n-1) for n in range(1,41)] # _G. C. Greubel_, Oct 29 2024 %Y A122572 Cf. A028230, A122571. %K A122572 sign,easy %O A122572 1,3 %A A122572 _Roger L. Bagula_, Sep 17 2006 %E A122572 Edited by _N. J. A. Sloane_, Dec 04 2006