This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122670 #16 Dec 30 2023 17:49:20 %S A122670 1,1,0,0,2,2,0,0,12,12,0,0,120,120,0,0,1680,1680,0,0,30240,30240,0,0, %T A122670 665280,665280,0,0,17297280,17297280,0,0,518918400,518918400,0,0, %U A122670 17643225600,17643225600,0,0,670442572800,670442572800,0,0,28158588057600,28158588057600,0,0,1295295050649600 %N A122670 If n mod 4 = 2 or n mod 4 = 3 then a(n) = 0 else let m=floor(n/4), then a(n) = (2*m)!/m!. %C A122670 Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details). %C A122670 A037224 is an essentially identical sequence. %D A122670 R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). %F A122670 For asymptotics see the Robinson paper. %F A122670 a(n) = (1/2 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2) * ((n/2 - 3/4 + (-1)^n/4 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2)! / ((n/4 - 3/8 + (-1)^n/8 + (-1)^(n/2 - 1/4 + (-1)^n/4)/4)!)). - _Wesley Ivan Hurt_, Mar 30 2015 %p A122670 R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end; %p A122670 For Maple program see A000903. %t A122670 Table[If[MemberQ[{2,3},Mod[n,4]],0,((2Floor[n/4])!/Floor[n/4]!)],{n,0,50}] (* _Harvey P. Dale_, Dec 30 2023 *) %Y A122670 If the duplicates and zeros are omitted we get A001813. %Y A122670 Cf. A000898, A000899, A000900, A000901, A000902, A000903, A037224. %K A122670 nonn %O A122670 0,5 %A A122670 _N. J. A. Sloane_, Sep 23 2006