cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122692 Cubeful numbers whose neighbors are also cubeful.

Original entry on oeis.org

1376, 4375, 4913, 5751, 6859, 13311, 13376, 16120, 21249, 22625, 22626, 24353, 25624, 28376, 31375, 32751, 33615, 40473, 41743, 48249, 49625, 49735, 52624, 55376, 57968, 58375, 59751, 75249, 76625, 79624, 82376, 85375, 86751, 90208
Offset: 1

Views

Author

Tanya Khovanova, Oct 21 2006

Keywords

Comments

The asymptotic density of this sequence is 1 - 3/zeta(3) + 3 * Product_{p prime} (1 - 2/p^3) - Product_{p prime} (1 - 3/p^3) = 1 - 3 * A088453 + 3 * A340153 - Product_{p prime} (1 - 3/p^3) = 0.00038922120241968636455... . - Amiram Eldar, Sep 12 2024

Examples

			1376 is divisible by 8, and its neighbors 1375 and 1377 are divisible by 125 and 27, respectively.
		

Crossrefs

Subsequence of A046099 and A068140.

Programs

  • Maple
    N := 10^6: # get all terms <= N
    CF := {seq(seq(x^3 * y, y = 1..floor(N/x^3)), x = 2..floor(N^(1/3)))}:
    CF intersect map(`-`, CF, 1) intersect map(`+`, CF, 1): # Robert Israel, Jul 16 2014
  • Mathematica
    Select[Range[2, 100000], Max[Transpose[FactorInteger[ # ]][[2]]] >= 3 && Max[Transpose[FactorInteger[# + 1]][[2]]] >= 3 && Max[Transpose[FactorInteger[# - 1]][[2]]] >= 3 &]
    cnQ[{a_,b_,c_}] := And@@(# > 2 &/@{a, b, c}); Flatten[Position[Partition[Table[Max[Transpose[FactorInteger[n]][[2]]], {n, 91000}], 3, 1], ?(cnQ[#] &)]] + 1 (* _Harvey P. Dale, Jul 28 2013 *)
  • PARI
    iscubefree(n) = vecsort(factor(n)~, 2, 4)[2, 1] < 3
    s = []; for(n = 3, 200000, if(!iscubefree(n - 1) && !iscubefree(n) && !iscubefree(n + 1), s = concat(s, n))); s \\ Colin Barker, Jul 16 2014
    
  • PARI
    A051903(n)=if(n>1, vecmax(factor(n)[, 2]), 0)
    is(n)=A051903(n)>2 && A051903(n-1)>2 && A051903(n+1)>2 \\ Charles R Greathouse IV, Jul 23 2014