A122692 Cubeful numbers whose neighbors are also cubeful.
1376, 4375, 4913, 5751, 6859, 13311, 13376, 16120, 21249, 22625, 22626, 24353, 25624, 28376, 31375, 32751, 33615, 40473, 41743, 48249, 49625, 49735, 52624, 55376, 57968, 58375, 59751, 75249, 76625, 79624, 82376, 85375, 86751, 90208
Offset: 1
Keywords
Examples
1376 is divisible by 8, and its neighbors 1375 and 1377 are divisible by 125 and 27, respectively.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale, terms 1001..3903 from Robert Israel)
Programs
-
Maple
N := 10^6: # get all terms <= N CF := {seq(seq(x^3 * y, y = 1..floor(N/x^3)), x = 2..floor(N^(1/3)))}: CF intersect map(`-`, CF, 1) intersect map(`+`, CF, 1): # Robert Israel, Jul 16 2014
-
Mathematica
Select[Range[2, 100000], Max[Transpose[FactorInteger[ # ]][[2]]] >= 3 && Max[Transpose[FactorInteger[# + 1]][[2]]] >= 3 && Max[Transpose[FactorInteger[# - 1]][[2]]] >= 3 &] cnQ[{a_,b_,c_}] := And@@(# > 2 &/@{a, b, c}); Flatten[Position[Partition[Table[Max[Transpose[FactorInteger[n]][[2]]], {n, 91000}], 3, 1], ?(cnQ[#] &)]] + 1 (* _Harvey P. Dale, Jul 28 2013 *)
-
PARI
iscubefree(n) = vecsort(factor(n)~, 2, 4)[2, 1] < 3 s = []; for(n = 3, 200000, if(!iscubefree(n - 1) && !iscubefree(n) && !iscubefree(n + 1), s = concat(s, n))); s \\ Colin Barker, Jul 16 2014
-
PARI
A051903(n)=if(n>1, vecmax(factor(n)[, 2]), 0) is(n)=A051903(n)>2 && A051903(n-1)>2 && A051903(n+1)>2 \\ Charles R Greathouse IV, Jul 23 2014
Comments