This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122693 #8 Jul 23 2022 19:25:51 %S A122693 0,2,4,32,128,1152,6912,73728,589824,7372800,73728000,1061683200, %T A122693 12740198400,208089907200,2913258700800,53271016243200, %U A122693 852336259891200,17259809262796800,310676566730342400,6903923705118720000,138078474102374400000,3341499073277460480000 %N A122693 Bishops on an n X n board (see Robinson paper for details). %D A122693 R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (C_{2n+1}, Eq. (20)) %H A122693 R. W. Robinson, <a href="/A000899/a000899_1.pdf">Counting arrangements of bishops</a>, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy) %p A122693 C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; [seq(C(2*n+1),n=0..30)]; %t A122693 c[n_] := Module[{k}, If[Mod[n, 2] == 0, 0, k = (n-1)/2; If[Mod[k, 2] == 0, k*2^(k-1)*((k/2)!)^2, 2^k*(((k+1)/2)!)^2]]]; %t A122693 a[n_] := c[2n+1]; %t A122693 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Jul 23 2022, after Maple code *) %K A122693 nonn %O A122693 0,2 %A A122693 _N. J. A. Sloane_, Sep 25 2006