cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122748 Bishops on an n X n board (see Robinson paper for details).

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 16, 40, 72, 260, 432, 1976, 2880, 17632, 23040, 177248, 201600, 2001680, 2016000, 24879520, 21772800, 338969216, 261273600, 5002865792, 3353011200, 79676972608, 46942156800, 1358997441920, 697426329600, 24740358817280, 11158821273600, 478218277674496
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2006

Keywords

References

  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (M_n, p. 208)

Programs

  • Maple
    unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
    M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end;
  • Mathematica
    d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
    a[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)