A122749 Number of arrangements of n non-attacking bishops on an n X n board such that every square of the board is controlled by at least one bishop.
4, 2, 16, 44, 256, 768, 5184, 25344, 186624, 996480, 8294400, 57888000, 530841600, 4006195200, 40642560000, 367408742400, 4064256000000, 39358255104000, 474054819840000, 5254107586560000, 68263894056960000, 804207665479680000, 11242684107325440000
Offset: 2
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 2..200
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [E_n, n >= 2.]
Programs
-
Maple
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end;
-
Mathematica
Table[If[n==1,1,1/768*(2*(3*n^3+23*n^2+17*n+21)*(((n-1)/2)!)^2*(1-(-1)^n+2*Sin[(Pi*n)/2])-2*(3*n^3+17*n^2-47*n+3)*((n-3)/2)!*((n+1)/2)!*((-1)^n+2*Sin[(Pi*n)/2]-1)+3*(n+2)^4*((n/2-1)!)^2*((-1)^n-2*Cos[(Pi*n)/2]+1)+12*(n+4)^2*((n/2)!)^2*((-1)^n+2*Cos[(Pi*n)/2]+1))],{n,2,25}] (* Vaclav Kotesovec, Apr 26 2012 *) a[n_] := Module[{k}, If[Mod[n, 2]==0, k = n/2; If[Mod[k, 2]==0, (k!*(k+2) /2)^2, ((k-1)!*(k+1)^2/2)^2], k = (n-1)/2; If[Mod[k, 2]==0, ((k!)^2/12)* (3*k^3+16*k^2+18*k+8), ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3)]]]; Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)
Formula
From Andy Huchala, Mar 22 2024 (based on Mathematica code): (Start)
a(4*n) = (n+1)^2*((2*n)!)^2.
a(4*n+1) = (1/3)*(n+2)*(1+4*n+6*n^2)*((2*n)!)^2.
a(4*n+2) = 4*(n+1)^4*((2*n)!)^2.
a(4*n+3) = (1/3)*(3+17*n+22*n^2+6*n^3)*(2*n)!*(2*n+2)!. (End)
Extensions
New name from Vaclav Kotesovec, Apr 26 2012