cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A122768 Number of combinations which can be taken from the integer partitions of n. Total number of cases in the (n,m)-fragmentation process.

This page as a plain text file.
%I A122768 #38 Sep 25 2023 14:28:14
%S A122768 0,1,3,7,15,29,54,95,163,270,439,696,1088,1669,2530,3780,5591,8173,
%T A122768 11845,17000,24215,34210,48008,66895,92660,127554,174651,237830,
%U A122768 322297,434625,583524,779972,1038356,1376787,1818755,2393775,3139812,4104433,5348375,6947545,8998201,11620313,14965126,19220569
%N A122768 Number of combinations which can be taken from the integer partitions of n. Total number of cases in the (n,m)-fragmentation process.
%C A122768 Consider a fragmentation process of an n-object which consists of n unlabeled elements (= 1-parts). By definition the n-object can scatter into up to n m-parts where an m-part consists of 1 up to n elements. A 4-object can split up for example into 4 1-parts which corresponds to the integer partition [1,1,1,1], or it can, for example, rest unfragmented which corresponds to [4]. Since the number of integer partitions of n=4 equals 5, there are 5 n=4-fragmentation processes.
%C A122768 Now we ask for the probability of getting an m-part after an n-fragmentation. Think of a Greek statue which had been broken into n parts and covered by earth. We could find several m-parts, in the most lucky case we would find all m-parts which add up to m_1+m_2+...+m_n=n. Then the statue could be restored.
%C A122768 For example for n=4 we could ask for the probability prob(n=4,m=2) of just a single 2-part. We have 2 cases for a 2-part and we have 15 cases in total, thus prob(n=4,m=2)=2/15 (the 2 cases come from [1,1,2] and [2,2]). The chances to find the two 2-parts from the [2,2]-fragmentation are 1/15 only. The chances to find the n=4-object unsplitted are also 1/15 only.
%C A122768 This sequence is generated over the unordered partitions; for example, when n = 4 there are 1+3+2+5+4 = 15 cases. If we allow a null case for each of the five partitions then we have 15+5 = 20 which is A000712(4). - _Alford Arnold_, Dec 12 2006
%C A122768 Number of partitions into two kinds of parts with the first kind of parts used in each partition. - _Joerg Arndt_, Jun 21 2011
%H A122768 Alois P. Heinz, <a href="/A122768/b122768.txt">Table of n, a(n) for n = 0..10000</a>
%F A122768 G.f.: 1/P(x)^2 - 1/P(x) where P(x)=prod(k>=1, 1-x^k ). - _Joerg Arndt_, Jun 21 2011
%F A122768 With sum_i^P(n) = the sum over all P(n) integer partitions of n, sum_j^p(i) = the sum over all p(i) parts of the i-th integer partition, prttn(i) = the i-th partition whereat prttn(i) is a list, choose(L,k) = construct the list LC of combinations of a list L (see Maple), |LC| = number of elements of list LC (=Maple's nops command) we have a(n) = sum_i^P(n) sum_j^p(i) |choose(prttn,j)|
%F A122768 a(n) = A000712(n) - A000041(n). - _Alford Arnold_, Dec 12 2006
%F A122768 a(n) = A144064(n,2)-A144064(n,1). - _Alois P. Heinz_, Mar 31 2017
%F A122768 a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(3/4)*n^(5/4)) * (1 - (Pi/12 + 45/(16*Pi))/sqrt(3*n)). - _Vaclav Kotesovec_, Mar 31 2017
%e A122768 a(n=4) = 15 because the possible combinations of all five integer partitions of n=4 are: [1], [1, 1], [1, 1, 1], [1, 1, 1, 1], [1], [2], [1, 1], [1, 2], [1, 1, 2], [2], [2, 2], [1], [3], [1, 3], [4].
%p A122768 A122768 := proc(n::integer) local i,j,prttnlst,prttn,ZahlTeile,H; prttnlst:=partition(n); H := NULL; for i from 1 to nops(prttnlst) do prttn := prttnlst[i]; ZahlTeile := nops(prttn); for j from 1 to ZahlTeile do H := H,op(choose(prttn,j)); od; od; print(n,H,nops([H])); end proc;
%p A122768 A000712 := proc(n) option remember ; add(combinat[numbpart](k)*combinat[numbpart](n-k),k=0..n) ; end: A000041 := proc(n) combinat[numbpart](n) ; end: A122768 := proc(n::integer) RETURN( A000712(n)-A000041(n)) ; end: for n from 0 to 80 do printf("%d,",A122768(n)) ; od: # _R. J. Mathar_, Aug 25 2008
%p A122768 # third Maple program:
%p A122768 b:= proc(n, k) option remember; `if`(n=0, 1, add(
%p A122768       k*numtheory[sigma](j)*b(n-j, k), j=1..n)/n)
%p A122768     end:
%p A122768 a:= n-> b(n,2)-b(n,1):
%p A122768 seq(a(n), n=0..50);  # _Alois P. Heinz_, Mar 31 2017
%t A122768 1/QPochhammer[x]^2 - 1/QPochhammer[x] + O[x]^50 // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 05 2017, after _Joerg Arndt_ *)
%o A122768 (PARI)  x='x+O('x^66); /* that many terms */
%o A122768 Vec(1/eta(x)^2-1/eta(x)) /* show terms (omitting initial zero) */
%o A122768 /* _Joerg Arndt_, Jun 21 2011 */
%o A122768 (Haskell)
%o A122768 a122768 n = a122768_list !! n
%o A122768 a122768_list = 0 : f (tail a000041_list) [1] where
%o A122768    f (p:ps) rs = (sum $ zipWith (*) rs $ tail a000041_list) : f ps (p : rs)
%o A122768 -- _Reinhard Zumkeller_, Nov 09 2015
%o A122768 (Python)
%o A122768 from sympy import npartitions
%o A122768 def A122768(n): return (sum(npartitions(k)*npartitions(n-k) for k in range(1,n+1>>1))<<1) + (0 if n&1 else npartitions(n>>1)**2) + npartitions(n) if n else 0 # _Chai Wah Wu_, Sep 25 2023
%Y A122768 Cf. A000041, A000079, A000262.
%Y A122768 Cf. A000712, A074139, A074141.
%Y A122768 Cf. A048574, A144064.
%K A122768 nonn
%O A122768 0,3
%A A122768 _Thomas Wieder_, Sep 11 2006
%E A122768 Extended by _R. J. Mathar_, Aug 25 2008