This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122832 #33 Sep 16 2024 09:20:22 %S A122832 1,1,1,3,2,1,7,9,3,1,25,28,18,4,1,81,125,70,30,5,1,331,486,375,140,45, %T A122832 6,1,1303,2317,1701,875,245,63,7,1,5937,10424,9268,4536,1750,392,84,8, %U A122832 1,26785,53433,46908,27804,10206,3150,588,108,9,1 %N A122832 Exponential Riordan array (e^(x(1+x)),x). %C A122832 Row sums are A000898. Inverse is A122833. Product of A007318 and A067147. %H A122832 Michel Marcus, <a href="/A122832/b122832.txt">Rows n=0..50 of triangle, flattened</a> %F A122832 Number triangle T(n,k) = (n!/k!)*Sum_{i = 0..n-k} C(i,n-k-i)/i!. %F A122832 From _Peter Bala_, May 14 2012: (Start) %F A122832 Array is exp(S + S^2) where S is A132440 the infinitesimal generator for Pascal's triangle. %F A122832 T(n,k) = binomial(n,k)*A047974(n-k). %F A122832 So T(n,k) gives the number of ways to choose a subset of {1,2,...,n} of size k and then arrange the remaining n-k elements into a set of lists of length 1 or 2. (End) %F A122832 From _Peter Bala_, Oct 24 2023: (Start) %F A122832 n-th row polynomial: R(n,x) = exp(D + D^2) (x^n) = exp(D^2) (1 + x)^n, where D denotes the derivative operator d/dx. Cf. A111062. %F A122832 The sequence of polynomials defined by R(n,x-1) = exp(D^2) (x^n) begins [1, 1, 2 + x^2, 6*x + x^3, 12 + 12*x^2 + x^4, ...] and is related to the Hermite polynomials. See A059344. (End) %e A122832 Triangle begins: %e A122832 1; %e A122832 1, 1; %e A122832 3, 2, 1; %e A122832 7, 9, 3, 1; %e A122832 25, 28, 18, 4, 1; %e A122832 81, 125, 70, 30, 5, 1; %e A122832 ... %e A122832 From _Peter Bala_, May 14 2012: (Start) %e A122832 T(3,1) = 9. The 9 ways to select a subset of {1,2,3} of size 1 and arrange the remaining elements into a set of lists (denoted by square brackets) of length 1 or 2 are: %e A122832 {1}[2,3], {1}[3,2], {1}[2][3], %e A122832 {2}[1,3], {2}[3,1], {2}[1][3], %e A122832 {3}[1,2], {3}[2,1], {3}[1][2]. (End) %t A122832 (* The function RiordanArray is defined in A256893. *) %t A122832 RiordanArray[E^(#(1+#))&, #&, 10, True] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *) %o A122832 (PARI) T(n,k) = (n!/k!)*sum(i=0, n-k, binomial(i,n-k-i)/i!); \\ _Michel Marcus_, Aug 28 2017 %Y A122832 A000898 (row sums), A047974 (column 0), A291632 (column 1), A122833 (inverse array). %Y A122832 Cf. A059344, A111062. %K A122832 easy,nonn,tabl %O A122832 0,4 %A A122832 _Paul Barry_, Sep 12 2006 %E A122832 More terms from _Michel Marcus_, Aug 28 2017