This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122852 #48 Feb 15 2023 09:40:24 %S A122852 1,1,2,3,6,11,24,51,122,291,756,1979,5526,15627,46496,140451,442194, %T A122852 1414931,4687212,15785451,54764846,193129659,698978136,2570480147, %U A122852 9672977706,36967490691,144232455524,571177352091,2304843053382,9434493132011,39289892366736 %N A122852 Row sums of number triangle A122851. %C A122852 Essentially the same as A072374. - _R. J. Mathar_, Jun 18 2008 %C A122852 Diagonal sums of A008279. - _Paul Barry_, Feb 11 2009 %H A122852 Vincenzo Librandi, <a href="/A122852/b122852.txt">Table of n, a(n) for n = 0..200</a> %H A122852 Jonathan Fang, Zachary Hamaker, and Justin Troyka, <a href="https://arxiv.org/abs/2009.00079">On pattern avoidance in matchings and involutions</a>, arXiv:2009.00079 [math.CO], 2020. See Theorem 1.6 (b). %H A122852 Guo-Niu Han, <a href="https://arxiv.org/abs/1906.00103">Hankel Continued fractions and Hankel determinants of the Euler numbers</a>, arXiv:1906.00103 [math.CO], 2019. See p. 27. %H A122852 Qiong Qiong Pan and Jiang Zeng, <a href="https://arxiv.org/abs/1910.01747">The gamma-coefficients of Branden's (p,q)-Eulerian polynomials and André permutations</a>, arXiv:1910.01747 [math.CO], 2019. %F A122852 a(n) = Sum{k=0..n} C(k,n-k)*(n-k)!. %F A122852 From _Paul Barry_, Feb 11 2009: (Start) %F A122852 G.f.: 1/(1-x-x^2/(1-x^2/(1-x-2x^2/(1-2x^2/(1-x-3x^2/(1-3x^2/(1-x-4x^2/(1-4x^2/(1-... (continued fraction). %F A122852 a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*k!. (End) %F A122852 D-finite with recurrence -2*a(n) + 3*a(n-1) + (n-1)*a(n-2) + (-n+1)*a(n-3) = 0. - _R. J. Mathar_, Nov 15 2012. Proof in [Han 2019] %F A122852 a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 + 1/8) * n^((n+1)/2) / 2^(n/2+1) * (1 + 37/(48*sqrt(2*n))). - _Vaclav Kotesovec_, Feb 08 2014 %F A122852 a(n) = (a(n-1) + n * a(n-2) + 1)/2 for n > 1. - _Seiichi Manyama_, Nov 19 2022 %t A122852 Table[Sum[Binomial[n-k,k]*k!,{k,0,Floor[n/2]}],{n,0,20}] (* _Vaclav Kotesovec_, Feb 08 2014 *) %o A122852 (PARI) a(n) = sum(k=0, n, binomial(k,n-k)*(n-k)!); \\ _Michel Marcus_, Sep 02 2020 %Y A122852 Cf. A072374, A008279. %Y A122852 Cf. A357532, A357533, A357570. %K A122852 easy,nonn %O A122852 0,3 %A A122852 _Paul Barry_, Sep 14 2006 %E A122852 More terms from _Vaclav Kotesovec_, Jun 04 2019