A122881 Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.
1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
Offset: 1
Examples
For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal. For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ... First few rows of the triangle are: 1; 1, 2; 1, 2, 5; 1, 2, 5, 13; 1, 2, 5, 14, 34; 1, 2, 5, 14, 42, 89; 1, 2, 5, 14, 42, 131, 233; 1, 2, 5, 14, 42, 132, 417, 610; ...
Formula
Begin with polygonal matrices of the form (exemplified by the Heptagonal matrix M3: [1, 1, 1; 1, 1, 0; 1, 0, 0]). Let matrix P3 = 1 / M3^2; then for n X n matrices P2, P3, P4...perform P^n * [1, 0, 0] letting this vector = k-th diagonal of the triangle.
Comments