This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A122897 #16 Jun 13 2020 09:49:51 %S A122897 1,1,1,1,3,1,1,8,5,1,1,22,19,7,1,1,64,67,34,9,1,1,196,232,144,53,11,1, %T A122897 1,625,804,573,261,76,13,1,1,2055,2806,2211,1171,426,103,15,1,1,6917, %U A122897 9878,8399 %N A122897 Riordan array (1/(1-x), c(x)-1) where c(x) is the g.f. of A000108. %C A122897 Product of A007318 and A122896. Inverse of Riordan array ((1+x+x^2)/(1+x)^2,x/(1+x)^2). Row sums are A024718. %C A122897 The n-th row polynomial (in descending powers of x) equals the n-th Taylor polynomial of the rational function (1 - x^2)/(1 + x + x^2) * (1 + x)^(2*n) about 0. For example, for n = 4 we have (1 - x^2)/( 1 + x + x^2) * (1 + x)^8 = (x^4 + 22*x^3 + 19*x^2 + 7*x + 1) + O(x^5). - _Peter Bala_, Feb 21 2018 %H A122897 P. Bala, <a href="/A264772/a264772_1.pdf">A 4-parameter family of embedded Riordan arrays</a> %F A122897 T(n,k) = binomial(2*n,n-k) + 2*Sum_{j = 1..n-k} cos((2/3)*Pi*j)* binomial(2*n, n-k-j). - _Peter Bala_, Feb 21 2018 %F A122897 T(n,k) = k*Sum_{i=0..n-k} C(2*(i+k),i)/(i+k), T(n,0)=1. - _Vladimir Kruchinin_, Jun 13 2020 %e A122897 Triangle begins %e A122897 1, %e A122897 1, 1, %e A122897 1, 3, 1, %e A122897 1, 8, 5, 1, %e A122897 1, 22, 19, 7, 1, %e A122897 1, 64, 67, 34, 9, 1, %e A122897 1, 196, 232, 144, 53, 11, 1, %e A122897 1, 625, 804, 573, 261, 76, 13, 1, %e A122897 1, 2055, 2806, 2211, 1171, 426, 103, 15, 1, %e A122897 1, 6917, 9878, 8399, 4979, 2126, 647, 134, 17, 1, %e A122897 1, 23713, 35072, 31655, 20483, 9878, 3554, 932, 169, 19, 1 %p A122897 A122897 := proc (n, k) %p A122897 binomial(2*n, n-k) + 2*add(cos((2/3)*Pi*j)*binomial(2*n, n-k-j), j = 1..n-k) %p A122897 end proc: %p A122897 for n from 0 to 10 do %p A122897 seq(A122897(n, k), k = 0..n) %p A122897 end do; # _Peter Bala_, Feb 21 2018 %K A122897 easy,nonn,tabl %O A122897 0,5 %A A122897 _Paul Barry_, Sep 18 2006